Digital voice biomarkers for Parkinson’s disease: A study on sustained vowel analysis in the Russian population
Voice abnormalities are common in Parkinson’s disease (PD), but the extent to which language-robust acoustic markers capture PD dysphonia in real-world clinical recording conditions and whether they are confounded by sex, language background, or medication state remains uncertain. This study aims to quantify PD-controlled differences in sustained-vowel acoustics in a Russian cohort, evaluate sex and language effects (Russian, Russian–Tatar bilinguals, and exploratory Tatar subgroup), and assess the robustness to clinical covariates. Cross-sectional data from the BRAINPHONE project were analyzed (n = 201; PD = 109; controls = 92). Participants produced sustained/aː/vowels in routine clinics (≥16 kHz, 32-bit.,wav). Acoustic features included perturbation (jitter and shimmer), cepstral/noise measures (cepstral peak prominence; harmonic-to-noise ratio; glottal-to-noise excitation ratio), and pitch metrics. Group contrasts used the Mann–Whitney U test and false discovery rate (FDR). Robust models adjusted for age, sex, and language; prespecified interactions probed diagnosis × sex/language. Spearman correlations related acoustics to Movement Disorder Society-Unified Parkinson’s Disease Rating Scale III, Hoehn and Yahr, disease duration, and medication variables. PD showed higher perturbation and lower cepstral/noise measures than controls (all q≤0.01 effects were consistent in females and males and replicated in Russian monolinguals and Russian–Tatar bilinguals with the Tatar monolingual subgroup being directionally similar. Covariate-adjusted models retained significant PD effects. Acoustic–clinical correlations were small (|ρ|≤~0.21) and did not survive FDR. In real-world clinical recordings of sustained vowels, CPPS, GNE, and shimmer provide robust, language-tolerant, medication-insensitive markers of PD dysphonia, supporting use as a complementary digital biomarker for telemedicine and longitudinal monitoring.
- World Health Organization. Parkinson Disease Fact Sheet. Available from: https://www.who.int/news-room/fact-sheets/ detail/parkinson-disease [Last accessed on 2025 Nov 10].
- Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013. doi: 10.1038/nrdp.2017.13
- Kalashnikova OS, Munasipova SE, Khasanova DM, Latypova GR, Zalyalova ZA. Epidemiology of Parkinson’s disease in the Republic of Tatarstan. Pract Med. 2011;7(55):210-211.
- Rozhdestvensky AS, Delov RA, Marks EA, Gaponenko IA, Khanokh EV. Clinical and epidemiological aspects of Parkinson’s disease in the South of Western Siberia. Front Neurol. 2020;11:538782. doi: 10.3389/fneur.2020.538782
- Razdorskaya VV, Voskresenskaya ON, Yudina GK. Parkinson’s disease in Russia: Prevalence and incidence. Saratov J Med Sci Res. 2016;12(3):379-384.
- Zalyalova ZA, Kalashnikovva OS, Abdulgalimova DM. Parkinsonism in the Republic of Tatarstan according to the data of the Republican clinic-diagnostic center extrapyramidal pathology and Botulinotherapy. Neurol Bull. 2011;XLIII(2):92-96. doi: 10.17816/nb13706
- Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591-1601. doi: 10.1002/mds.26424
- Ministry of Health of the Russian Federation. Clinical Guidelines Parkinson’s Disease, Secondary Parkinsonism and Other Diseases Manifested By Parkinsonism Syndrome; 2021.
- FDA-NIH (Food and Drug Administration-National Institutes of Health). Biomarker Working Group. BEST (Biomarkers, Endpoints, and other Tools) Resource. Silver Spring, MD: Food and Drug Administration; 2016.
- Vasudevan S, Saha A, Tarver ME, Patel B. Digital biomarkers: Convergence of digital health technologies and biomarkers. NPJ Digit Med. 2022;5:36. doi: 10.1038/s41746-022-00583-z
- Cao F, Vogel AP, Gharahkhani P, Renteria ME. Speech and language biomarkers for Parkinson’s disease prediction, early diagnosis and progression. NPJ Parkinsons Dis. 2025;11:57. doi: 10.1038/s41531-025-00913-4
- Naeem I, Ditta A, Mazhar T, Anwar M, Saeed MM, Hamamet H. Voice biomarkers as prognostic indicators for Parkinson’s disease using machine learning techniques. Sci Rep. 2025;15:12129. doi: 10.1038/s41598-025-96950-3
- Atalar MS, Oguz O, Genc G. Hypokinetic dysarthria in Parkinson’s disease: A narrative review. Sisli Etfal Hastan Tip Bul. 2023;57(2):163-170. doi: 10.14744/SEMB.2023.29560
- Xavier D, Felizardo V, Ferreira B, et al. Voice analysis in Parkinson’s disease - a systematic literature review. Artif Intell Med. 2025;163:103109. doi: 10.1016/j.artmed.2025.103109
- Suppa A, Costantini G, Asci F, et al. Voice in Parkinson’s disease: A machine learning study. Front Neurol. 2022;13:831428. doi: 10.3389/fneur.2022.831428
- Rusz J, Cmejla R, Ruzickova H, Ruzicka E. Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson’s disease. J Acoust Soc Am. 2011;129:350-367. doi: 10.1121/1.3514381
- Dudek M, Hemmerling D, Kaczmarska M, et al. Analysis of voice, speech, and language biomarkers of Parkinson’s disease collected in a mixed reality setting. Sensors (Basel). 2025;25(8):2405. doi: 10.3390/s25082405
- Sousa M, Krýže P, Amstutz D, et al. Digital speech biomarkers can measure acute effects of levodopa in Parkinson’s disease. NPJ Parkinsons Dis. 2025;11:184. doi: 10.1038/s41531-025-01045-5
- Siniukov M, Xing E, Attaripour Isfahani S, Soleymani M. Towards a Generalizable Speech Marker for Parkinson’s Disease. ArXiv:2501.03581v2 [eess.AS]. doi: 10.48550/arXiv.2501.03581
- Conklin J, Dmitrieva O. Vowel acoustics of Volga Tatar. In: Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 2019); 2019. p. 1604-1608.
- Khasanova D, Khasanov I, Ilina G, Zalyalova Z. Gender specificity in AI-Based screening diagnostics of Parkinson’s disease (brainphone project). Mov Disord. 2024;39:S574-S575.
- Zalyalova Z, Khasanova D, Khasanov I, Ilina G. Artificial intelligence opportunities for voice diagnostics of Parkinson’s disease (BRAINPHONE project). AD/PD 2024. Advances in Science and Therapy. In: Conference: International Conference on Alzheimer’s and Parkinson’s Diseases and Related Neurological Disorders (ADPD 2024). Lisbon; 2024. p. 1147. doi: 10.32000/2072-1757-2024-1-70-76
- Khasanova D, Khasanov I, Zalyalova Z. VHI-10 and cognitive dysfunction - relationship and appropriateness of use in patients with Parkinson’s disease. In: Conference: International Conference on Alzheimer’s and Parkinson’s Diseases and Related Neurological Disorders (ADPD 2024), Lisbon, 2024. p. 1412.
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA. 2013;310(20):2191-2194. doi: 10.1001/jama.2013.281053
- Arora S, Visanji NP, Mestre TA, et al. Investigating voice as a biomarker for leucine-rich repeat kinase 2-associated Parkinson’s disease. J Parkinsons Dis. 2018;8(4):503-510. doi: 10.3233/JPD-181389
- Wang M, Zhao X, Li F, et al. Using sustained vowels to identify patients with mild Parkinson’s disease in a Chinese dataset. Front Aging Neurosci. 2024;16:1377442. doi: 10.3389/fnagi.2024.1377442
- Tsanas T, Arora S. Data driven subtyping of parkinson’s using acoustic analysis of sustained vowels and cluster analysis: Findings in the Parkinson’s voice initiative study. SN Comput Sci. 2022;3:232. doi: 10.1007/s42979-022-01123-y
- Tykalova T, Novotny M, Ruzicka E, Dusek P, Rusz J. Short-term effect of dopaminergic medication on speech in early-stage Parkinson’s disease. npj Parkinsons Dis. 2022;8(1):22. doi: 10.1038/s41531-022-00286-y
- Rusz J, Tykalova T, Novotny M, Zogala D, Ruzicka E, Dusek P. Automated speech analysis in early untreated Parkinson’s disease: Relation to gender and dopaminergic transporter imaging. Eur J Neurol. 2021;29:81-90. doi: 10.1111/ene.15099
- Asci F, Costantini G, Saggio G, Suppa A. Fostering voice objective analysis in patients with movement disorders. Mov Disord. 2021;36:1041. doi: 10.1002/mds.28537
- Cernak M, Orozco-Arroyave JR, Rudzicz F, Christensend H, Vasquezb JK, Noth E. Characterisation of voice quality of Parkinson’s disease using differential phonological posterior features. Comput Speech Lang. 2017;46:196-208. doi: 10.1016/j.csl.2017.06.004
- Hertrich I, Ackermann H. Gender-specific vocal dysfunctions in Parkinson’s disease: Electroglottographic and acoustic analyses. Ann Otol Rhinol Laryngol. 1995;104(3):197-202. doi: 10.1177/000348949510400304
- Wu KH, Tobias ML, Kelley DB. Estrogen receptor expression in laryngeal muscle in relation to estrogen-dependent increases in synapse strength. Neuroendocrinology. 2003;78(2):72-80. doi: 10.1159/000071962
- Rusz J, Krack K, Tripoliti E. From prodromal stages to clinical trials: The promise of digital speech biomarkers in Parkinson’s disease. Neurosci Biobehav Rev. 2024(167):105922. doi: 10.1016/j.neubiorev.2024.105922
- Silva JMSD, Gomes AOC, Coriolano MDGWS, et al. Oropharyngeal geometry and acoustic parameters of voice in healthy and Parkinson’s disease subjects. Codas. 2023;35(2):e20210304. doi: 10.1590/2317-1782/20232021304pt
- Ho AK, Bradshaw JL, Iansek R. For better or worse: The effect of levodopa on speech in Parkinson’s disease. Mov Disord. 2008:23(4):574-580. doi: 10.1002/mds.21899
