AccScience Publishing / AN / Online First / DOI: 10.36922/AN025220068
ORIGINAL RESEARCH ARTICLE

Cognitive and ambulatory benefits of the brain gym exercises in Duchenne muscular dystrophy: A quasi-experimental study

Himadri Saket1 Jyoti Sharma1* Mohammad Sidiq2 Faizan Kashoo3 Aksh Chahal1
Show Less
1 Department of Physiotherapy, School of Allied Health Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
2 Physiotherapy Department, Tishk International University, Erbil, Iraq
3 Department of Physical Therapy and Health Rehabilitation, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Riyadh, Saudi Arabia
Advanced Neurology, 025220068 https://doi.org/10.36922/AN025220068
Received: 30 May 2025 | Revised: 21 August 2025 | Accepted: 13 October 2025 | Published online: 10 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Children with Duchenne muscular dystrophy (DMD) experience progressive motor decline that is compounded by cognitive impairments, prompting interest in movement-based neurocognitive interventions. In a pre–post quasi-experimental study, 84 ambulant boys with genetically confirmed DMD (mean age 10.1 ± 2.4 years) completed a 12-week program comprising eight Brain Gym protocols integrated with standard physiotherapy (76–82-min sessions, 5 days a week). Blinded assessors administered the Mini-Mental State Examination (MMSE; 0–30) and North Star Ambulatory Assessment (NSAA; 0–34) before and after the intervention. Paired t-tests were used to evaluate change, and effect sizes were expressed as Cohen’s d (α = 0.05). Cognition improved markedly, with MMSE rising from 13.64 ± 1.83 to 19.32 ± 1.81 (mean difference: 5.67, 95% confidence interval: 5.32–6.03; t (83) =−31.518; p<0.001; d = 3.439), whereas ambulation increased as NSAA scores rose from 6.298 ± 3.60 to 8.72 ± 3.30 (mean difference: 2.42, 95% confidence interval: 2.11–2.74; t (83) =−15.26; p<0.001; d = 1.66). No adverse events were reported. The substantial cognitive and significant motor effect sizes demonstrate that a brief, low-cost brain gym regimen can elicit rapid, clinically meaningful gains in both global cognition and ambulatory capacity in pediatric DMD, supporting its potential as a scalable adjunct to conventional rehabilitation. Randomized controlled trials with extended follow-up are warranted to confirm durability and broader applicability.

Keywords
Duchenne muscular dystrophy
Physical therapy modalities
Exercise therapy
Cognition
Gait disorders
Neurologic condition
Pediatric rehabilitation
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Butenko T, Loboda T, Osredkar D, et al. Duchenne muscular dystrophy-novelties in diagnostics and treatment. ZdravVestn. 2021;90(c):1-17. doi: 10.6016/ZdravVestn.3172

 

  1. Yiu EM, Kornberg AJ. Duchenne muscular dystrophy. J Paediatr Child Health. 2015;51(8):759-764. doi: 10.1111/jpc.12868

 

  1. Cotton S, Voudouris NJ, Greenwood KM. Intelligence and Duchenne muscular dystrophy: Full-scale, verbal, and performance intelligence quotients. Dev Med Child Neurol. 2001;43(7):497-501. doi: 10.1017/s0012162201000913

 

  1. Su Y, Song Y. The new challenge of “exercise + X” therapy for Duchenne muscular dystrophy-Individualized identification of exercise tolerance and precise implementation of exercise intervention. Front Physiol. 2022;13:947749. doi: 10.3389/fphys.2022.947749

 

  1. Lue YJ, Lin RF, Chen SS, Lu YM. Measurement of the functional status of patients with different types of muscular dystrophy. Kaohsiung J Med Sci. 2009;25(6):325-333. doi: 10.1016/S1607-551X(09)70523-6

 

  1. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane database Syst Rev. 2016;2016(5):CD003725. doi: 10.1002/14651858.CD003725.pub4

 

  1. Pedlow K, McDonough S, Lennon S, Kerr C, Bradbury I. Assisted standing for Duchenne muscular dystrophy. Cochrane database Syst Rev. 2019;10(10):CD011550. doi: 10.1002/14651858.CD011550.pub2

 

  1. Cyrulnik SE, Fee RJ, Batchelder A, Kiefel J, Goldstein E, Hinton VJ. Cognitive and adaptive deficits in young children with Duchenne muscular dystrophy (DMD). J Int Neuropsychol Soc. 2008;14(5):853-861. doi: 10.1017/S135561770808106X

 

  1. Snow WM, Anderson JE, Jakobson LS. Neuropsychological and neurobehavioral functioning in Duchenne muscular dystrophy: A review. Neurosci Biobehav Rev. 2013;37(5):743-752. doi: 10.1016/j.neubiorev.2013.03.016

 

  1. Ramos-Galarza C, Aymacaña-Villacreses C, Cruz-Cárdenas J. The intervention of Brain Gym in the mathematical abilities of high-school students: A pilot study. Front Psychol. 2022;13:1045567. doi: 10.3389/fpsyg.2022.1045567

 

  1. Ricotti V, Ridout DA, Pane M, et al. The NorthStar ambulatory assessment in Duchenne muscular dystrophy: Considerations for the design of clinical trials. J Neurol Neurosurg Psychiatry. 2016;87(2):149-155. doi: 10.1136/jnnp-2014-309405

 

  1. Diamond A, Lee K. Interventions shown to aid executive function development in children 4 to 12 years old. Science. 2011;333(6045):959-964. doi: 10.1126/science.1204529

 

  1. Kang H. Sample size determination and power analysis using the G*Power software. J Educ Eval Health Prof. 2021;18:1-12. doi: 10.3352/jeehp.2021.18.17

 

  1. Des Jarlais DC, Lyles C, Crepaz N. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: The TREND statement. Am J Public Health. 2004;94(3):361-366. doi: 10.2105/ajph.94.3.361

 

  1. Arevalo-Rodriguez I, Smailagic N, Roqué-Figuls M, et al. Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI). Cochrane Database Syst Rev. 2021;7(7):CD010783. doi: 10.1002/14651858.CD010783.pub3

 

  1. Stimpson G, James MK, Guglieri M, et al. Understanding North Star Ambulatory Assessment total scores and their implications for standards of care using observational data. Eur J Paediatr Neurol. 2024;53:123-130. doi: 10.1016/j.ejpn.2024.09.004

 

  1. Pratama RN, Purwanti C, Rosmiarti, Sansuwito T, Said FB. The effectiveness of brain gym on the cognitive abilities of children at Tk Aba 17 Palembang, Indonesia. Malaysian J Med Res . 2022;6(2):6-11. doi: 10.31674/mjmr.2022.v06i02.002

 

  1. Siroya V, Naqvi WM, Kulkarni CA. Importance of Brain gym as exercise in physiotherapy and rehabilitation. Int J Res Pharm Sci. 2020;11:1386-1389. doi: 10.26452/ijrps.v11iSPL4.4310

 

  1. Adenikheir A. Koordinasi dan daya ingat anak tunagrahita ringan setelah pemberian brain gym. Matern Child Heal Care J. 2021;3(3):545. doi: 10.32883/mchc.v3i3.1484

 

  1. Elbanna STE, Kamal H, Mahgoub E, Elshennawy S. Effect of brain GYM exercises on balance in preschool children: A randomized controlled trail. J Pak Med Assoc. 2023;73(Suppl 4):S17-21. doi: 10.47391/JPMA.EGY-S4-4

 

  1. Manalu TM, Suparmi S. Meningkatkan Memori Jangka Pendek pada Anak Autis dengan Senam Otak. Guidena. 2023;13(3):650. doi: 10.24127/gdn.v13i3.7688

 

  1. Mercuri E, Coratti G, Messina S, et al. Revised north star ambulatory assessment for young boys with Duchenne muscular dystrophy. PLoS One. 2016;11(8):e0160195. doi: 10.1371/journal.pone.0160195

 

  1. Thakre VM, Deshmukh M, Gibbs J. Effectiveness of brain gym exercises over cognitive behavioural therapy in improving sleep quality among healthcare university students: A comparative study. Cureus. 2024;16(4):e58463. doi: 10.7759/cureus.58463

 

  1. Amtonis I, Fata U. The Effect of brain gym to the improvement of cognitive function. J Ners Midwifery. 2014;1(2):87-92.

 

  1. Sommer IEC, Kahn RS. The magic of movement; the potential of exercise to improve cognition. Schizophr Bull. 2015;41(4):776-778. doi: 10.1093/schbul/sbv031

 

  1. Sorsdahl AB, Moe-Nilssen R, Kaale HK, Rieber J, Strand LI. Change in basic motor abilities, quality of movement and everyday activities following intensive, goal-directed, activity-focused physiotherapy in a group setting for children with cerebral palsy. BMC Pediatr. 2010;10:26. doi: 10.1186/1471-2431-10-26

 

  1. Mahoney G. Moving toward a new motor intervention paradigm. J Early Interv. 1999;22(1):19-21.

 

  1. Uwa-Agbonikhena I, Gryb V, Gerasymchuk V, Kupnovytska-Sabadosh M, Maksymchuk L. Effect of the complex physical therapy on the upper extremity function, functional independence and cognition in post-stroke patients. EUREKA Health Sci. 2021;(3):61-68. doi: 10.21303/2504-5679.2021.001768

 

  1. Xu Y, Ma L, Fang X, et al. Efficacy of Physiotherapy Intervention on Motor Abilities in Patients with Cerebral Palsy and Down Syndrome: A Systematic Review and Meta- Analysis [SSRN Preprint]; 2023.
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing