AccScience Publishing / AN / Online First / DOI: 10.36922/AN025150029
REVIEW ARTICLE

Peripheral neuropathies across the lifespan: Comparative insights from pediatric and adult populations

Ecem Saritas1 Mehmet Can Sari2 Ahmet Hoke2*
Show Less
1 Division of Critical Care and Hospital Medicine, Redox Health Center, Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, United States of America
2 Division of Neuromuscular Medicine, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
Advanced Neurology, 025150029 https://doi.org/10.36922/AN025150029
Received: 8 April 2025 | Revised: 6 August 2025 | Accepted: 1 September 2025 | Published online: 23 September 2025
(This article belongs to the Special Issue Advanced Neurology 3rd Anniversary Special Issue)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Peripheral neuropathies constitute a diverse group of disorders impacting the peripheral nervous system, leading to motor, sensory, and autonomic dysfunction. These conditions stem from a variety of etiologies, including genetic mutations, metabolic disorders, infections, autoimmune diseases, and toxic exposures, with presentations and progression varying significantly between pediatric and adult populations. In children, hereditary peripheral neuropathies such as Charcot–Marie–Tooth (CMT) disease are the most common, presenting with delayed motor milestones, muscle weakness, and foot deformities. Acute acquired neuropathies, including Guillain–Barré Syndrome (GBS), are rarer but often associated with life-threatening complications. Conversely, adults frequently experience peripheral neuropathies due to acquired conditions such as diabetes mellitus, often presenting with chronic, progressive symptoms such as distal sensory loss and weakness at later stages. Specific conditions, including entrapment neuropathies (e.g., carpal tunnel syndrome, ulnar neuropathies, and peroneal neuropathies), acquired conditions (e.g., diabetic neuropathy, GBS, chronic inflammatory demyelinating polyradiculoneuropathy, and chemotherapy-induced neuropathy), hereditary neuropathies (e.g., CMT diseases), and idiopathic form are explored in detail. Understanding age-specific variations in presentation and progression is critical for timely diagnosis and tailored therapeutic interventions. This review emphasizes key differences and similarities in the etiology, clinical presentation, diagnostic approaches, and management of peripheral neuropathies in pediatric and adult populations. A better understanding of age-specific patterns can enhance diagnostic accuracy and guide more appropriate clinical decision-making across the lifespan.

Keywords
Peripheral neuropathy
Adulthood
Childhood
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Gregg EW, Sorlie P, Paulose-Ram R, et al. Prevalence of lower-extremity disease in the U.S. adult population >40 years of age with and without diabetes: 1999–2000 National Health and Nutrition Examination Survey. Diabetes Care. 2004;27(7):1591-1597. doi: 10.2337/diacare.27.7.1591

 

  1. Guillain G, Barré JA, Strohl A. Sur un syndrome de radiculo-névrite avec hyperalbuminose du liquide céphalo-rachidien sans réaction cellulaire. Remarquessur les caractères cliniques et graphiques des réflexes tendineux [Radiculoneuritis syndrome with hyperalbuminosis of cerebrospinal fluid without cellular reaction. Notes on clinical features and graphs of tendon reflexes. 1916]. Ann Med Interne (Paris). 1999;150(1):24-32.

 

  1. Kuwabara S, Yuki N. Axonal Guillain-Barré syndrome: Concepts and controversies. Lancet Neurol. 2013;12(12):1180-1188. doi: 10.1016/S1474-4422(13)70215-1

 

  1. Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):42. doi: 10.1038/s41572-019-0097-9

 

  1. Hanewinckel R, van Oijen M, Ikram MA, van Doorn PA. The epidemiology and risk factors of chronic polyneuropathy. Eur J Epidemiol. 2016;31(1):5-20. doi: 10.1007/s10654-015-0094-6.

 

  1. Leti Acciaro A, Pilla F, Faldini C, Adani R. The carpal tunnel syndrome in children. Musculoskelet Surg. 2018;102(3):261-265. doi: 10.1007/s12306-017-0527-3

 

  1. Łukawska M, Potulska-Chromik A, Lipowska M, et al. Pediatric CIDP: Diagnosis and management. A single-center experience. Front Neurol. 2021;12:667378. doi: 10.3389/fneur.2021.667378. Erratum in: Front Neurol. 2022;12:784144. doi: 10.3389/fneur.2021.784144

 

  1. Kang P. Overview of Acquired Peripheral Neuropathies in Children. Wolters Kluwer; 2024. Available from: https:// www.uptodate.com/contents/overview-of-acquired-peripheral-neuropathies-in-children [Last accessed on 2025 Jul 31].

 

  1. Choi J, Tang Z, Dong W, et al. Unleashing the power of multiomics: Unraveling the molecular landscape of peripheral neuropathy. Ann Clin Transl Neurol. 2025;12(4):674-685. doi: 10.1002/acn3.700

 

  1. Yuen A, Dowling G, Johnstone B, Kornberg A, Coombs C. Carpal tunnel syndrome in children with mucopolysaccaridoses. J Child Neurol. 2007;22(3):260-263. doi: 10.1177/0883073807300528

 

  1. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. Lancet. 2016;388(10045):717-727. doi: 10.1016/S0140-6736(16)00339-1

 

  1. Wu X, Shen D, Li T, et al. Distinct clinical characteristics of pediatric Guillain-Barré syndrome: A comparative study between children and adults in Northeast China. PLoS One. 2016;11(3):e0151611. doi: 10.1371/journal.pone.0151611

 

  1. Bus SRM, Broers MC, Lucke IM, et al. Clinical outcome of CIDP one year after start of treatment: A prospective cohort study. J Neurol. 2022;269(2):945-955. doi: 10.1007/s00415-021-10677-5

 

  1. Kandula T, Farrar MA, Cohn RJ, et al. Chemotherapy-induced peripheral neuropathy in long-term survivors of childhood cancer: Clinical, neurophysiological, functional, and patient-reported outcomes. JAMA Neurol. 2018;75(8):980-988. doi: 10.1001/jamaneurol.2018.0963. Erratum in: JAMA Neurol. 2018;75(8):1028. doi: 10.1001/jamaneurol.2018.1742

 

  1. Tanaka S, Wild DK, Seligman PJ, Behrens V, Cameron L, Putz-Anderson V. The US prevalence of self-reported carpal tunnel syndrome: 1988 National Health Interview Survey data. Am J Public Health. 1994;84(11):1846-1848. doi: 10.2105/ajph.84.11.1846

 

  1. Viera AJ. Management of carpal tunnel syndrome. Am Fam Physician. 2003;68(2):265-272.

 

  1. Nowak W, Znamirowska P, Szmigielska N, et al. Risk factors for carpal tunnel syndrome. J Pre Clin Clin Res. 2023;17(3):167-170. doi: 10.26444/jpccr/168559

 

  1. Blumenthal S, Herskovitz S, Verghese J. Carpal tunnel syndrome in older adults. Muscle Nerve. 2006;34(1):78-83. doi: 10.1002/mus.20559

 

  1. Padua L, Coraci D, Erra C, et al. Carpal tunnel syndrome: Clinical features, diagnosis, and management. Lancet Neurol. 2016;15(12):1273-1284. doi: 10.1016/S1474-4422(16)30231-9

 

  1. Shapiro LM, Kamal RN, Management of Carpal Tunnel Syndrome Work Group, American Academy of Orthopaedic Surgeons. American Academy of Orthopaedic Surgeons/ ASSH clinical practice guideline summary management of carpal tunnel syndrome. J Am Acad Orthop Surg. 2025;33(7):e356-e366. doi: 10.5435/JAAOS-D-24-01179

 

  1. Rüsch CT, Knirsch U, Weber DM, et al. Etiology of carpal tunnel syndrome in a large cohort of children. Children (Basel). 2021;8(8):624. doi: 10.3390/children8080624

 

  1. Davis L, Vedanarayanan VV. Carpal tunnel syndrome in children. Pediatr Neurol. 2014;50(1):57-59. doi: 10.1016/j.pediatrneurol.2013.08.019

 

  1. Batdorf NJ, Cantwell SR, Moran SL. Idiopathic carpal tunnel syndrome in children and adolescents. J Hand Surg Am. 2015;40(4):773-777. doi: 10.1016/j.jhsa.2015.01.026

 

  1. Potulska-Chromik A, Lipowska M, Gawel M, Ryniewicz B, Maj E, Kostera-Pruszczyk A. Carpal tunnel syndrome in children. J Child Neurol. 2014;29(2):227-231. doi: 10.1177/0883073813504458

 

  1. Velicki K, Goldfarb CA, Roberts S, Wall LB. Outcomes of pediatric and adolescent carpal tunnel release. J Hand Surg Am. 2021;46(3):178-186. doi: 10.1016/j.jhsa.2020.09.009

 

  1. Pulos BP, Johnson RL, Laughlin RS, et al. Perioperative ulnar neuropathy: A contemporary estimate of incidence and risk factors. Anesth Analg. 2021;132(5):1429-1437. doi: 10.1213/ANE.0000000000005407

 

  1. Warner MA, Warner DO, Matsumoto JY, Harper CM, Schroeder DR, Maxson PM. Ulnar neuropathy in surgical patients. Anesthesiology. 1999;90(1):54-59. doi: 10.1097/00000542-199901000-00009

 

  1. Keenan MA, Kauffman DL, Garland DE, Smith C. Late ulnar neuropathy in the brain-injured adult. J Hand Surg Am. 1988;13(1):120-124. doi: 10.1016/0363-5023(88)90214-6

 

  1. Rubin G, Orbach H, Bor N, Rozen N. Tardy ulnar nerve palsy. J Am Acad Orthop Surg. 2019;27(19):717-725. doi: 10.5435/JAAOS-D-18-00138

 

  1. Sinikumpu JJ, Victorzon S, Lindholm EL, Peljo T, Serlo W. Ulnar nerve morbidity as a long-term complication of pediatric supracondylar humeral fracture. Musculoskelet Surg. 2014;98(2):127-133. doi: 10.1007/s12306-013-0291-y

 

  1. Agarwal A, Chandra A, Jaipal U, Saini N. Imaging in the diagnosis of ulnar nerve pathologies-a neoteric approach. Insights Imaging. 2019;10(1):37. doi: 10.1186/s13244-019-0714-x

 

  1. Caliandro P, La Torre G, Padua R, Giannini F, Padua L. Treatment for ulnar neuropathy at the elbow. Cochrane Database Syst Rev. 2012;(7):CD006839. doi: 10.1002/14651858.CD006839.pub3

 

  1. Dy CJ, Mackinnon SE. Ulnar neuropathy: Evaluation and management. Curr Rev Musculoskelet Med. 2016;9(2): 178-184. doi: 10.1007/s12178-016-9327-x

 

  1. Felice KJ, Royden Jones H Jr. Pediatric ulnar mononeuropathy: Report of 21 electromyography-documented cases and review of the literature. J Child Neurol. 1996;11(2):116-120. doi: 10.1177/088307389601100211

 

  1. Costales JR, Socolovsky M, Sánchez Lázaro JA, Costales DR. Peripheral nerve injuries in the pediatric population: A review of the literature. Part II: Entrapment neuropathies. Childs Nerv Syst. 2019;35(1):37-45. doi: 10.1007/s00381-018-3975-7

 

  1. Fan C, Yushan M, Liu Y, Bahesutihan Y, Liu K, Yusufu A. Treatment outcome of tardy ulnar nerve palsy associated with traumatic cubitus valgus by supracondylar shortening wedge rotary osteotomy and ulnar nerve in situ tension release. BMC Musculoskelet Disord. 2022;23(1):369. doi: 10.1186/s12891-022-05324-7

 

  1. Fortier LM, Markel M, Thomas BG, Sherman WF, Thomas BH, Kaye AD. An update on peroneal nerve entrapment and neuropathy. Orthop Rev (Pavia). 2021;13(2):24937. doi: 10.52965/001c.24937

 

  1. Poppler LH, Yu J, Mackinnon SE. Subclinical peroneal neuropathy affects ambulatory, community-dwelling adults and is associated with falling. Plast Reconstr Surg. 2020;145(4):769e-778e. doi: 10.1097/PRS.0000000000006637

 

  1. Sourkes M, Stewart JD. Common peroneal neuropathy: A study of selective motor and sensory involvement. Neurology. 1991;41(7):1029-1033. doi: 10.1212/wnl.41.7.1029

 

  1. Babayev M, Bodack MP, Creatura C. Common peroneal neuropathy secondary to squatting during childbirth. Obstet Gynecol. 1998;91(5 Pt 2):830-832. doi: 10.1016/s0029-7844(97)00717-5

 

  1. Fares MY, Dimassi Z, Fares J, Musharrafieh U. Peroneal neuropathy and bariatric surgery: Untying the knot. Int J Neurosci. 2020;130(4):417-423. doi: 10.1080/00207454.2019.1694926

 

  1. Jeon S, Kim DY, Shim DJ, Kim MW. Common peroneal neuropathy with anterior tibial artery occlusion: A case report. Ann Rehabil Med. 2017;41(4):715-719. doi: 10.5535/arm.2017.41.4.715

 

  1. Marciniak C. Fibular (peroneal) neuropathy: Electrodiagnostic features and clinical correlates. Phys Med Rehabil Clin N Am. 2013;24(1):121-137. doi: 10.1016/j.pmr.2012.08.016

 

  1. Levin KH, Wilbourn AJ, Jones HR Jr. Childhood peroneal neuropathy from bone tumors. Pediatr Neurol. 1991;7(4):308-309. doi: 10.1016/0887-8994(91)90053-n

 

  1. Ryan MM, Darras BT, Soul JS. Peroneal neuropathy from ankle-foot orthoses. Pediatr Neurol. 2003;29(1):72-74. doi: 10.1016/s0887-8994(03)00043-2

 

  1. Jones HR Jr., Felice KJ, Gross PT. Pediatric peroneal mononeuropathy: A clinical and electromyographic study. Muscle Nerve. 1993;16(11):1167-1173. doi: 10.1002/mus.880161105

 

  1. Shah N, Vemulapalli K. Foot drop secondary to ankle sprain in two paediatric patients: A case series. Cureus. 2022;14(6):e26398. doi: 10.7759/cureus.26398

 

  1. Matsubara K, Nigami H, Harigaya H, Osaki M, Baba K. Peroneal mononeuropathy in pediatric Hodgkin’s disease. Leuk Lymphoma. 2000;40(1-2):205-207. doi: 10.3109/10428190009054898

 

  1. Hicks CW, Selvin E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr Diab Rep. 2019;19(10):86. doi: 10.1007/s11892-019-1212-8

 

  1. Louraki M, Karayianni C, Kanaka-Gantenbein C, Katsalouli M, Karavanaki K. Peripheral neuropathy in children with type 1 diabetes. Diabetes Metab. 2012;38(4):281-289. doi: 10.1016/j.diabet.2012.02.006

 

  1. Blankenburg M, Kraemer N, Hirschfeld G, et al. Childhood diabetic neuropathy: Functional impairment and non-invasive screening assessment. Diabet Med. 2012;29(11):1425-1432. doi: 10.1111/j.1464-5491.2012.03685.x

 

  1. Louraki M, Katsalouli M, Kanaka-Gantenbein C, et al. The prevalence of early subclinical somatic neuropathy in children and adolescents with type 1 diabetes mellitus and its association with the persistence of autoantibodies to glutamic acid decarboxylase (GAD) and islet antigen-2 (IA-2). Diabetes Res Clin Pract. 2016;117:82-90. doi: 10.1016/j.diabres.2016.04.044

 

  1. Jeyam A, McGurnaghanc SJ, Blackbourn LAK, et al. Diabetic neuropathy is a substantial burden in ieople with type 1 diabetes and is strongly associated with socioeconomic disadvantage: A population-representative study from Scotland. Diabetes Care. 2020;43(4):734-742. doi: 10.2337/dc19-1582

 

  1. Sophausvaporn P, Boonhong J, Sahakitrungruang T. The prevalence of diabetic peripheral neuropathy in youth with diabetes mellitus. Ann Pediatr Endocrinol Metab. 2023;28(1):20-25. doi: 10.6065/apem.2244092.046

 

  1. Chandler E, Brown M, Wintergerst K, Doll E. Treatment-induced neuropathy of diabetes (TIND) in pediatrics: A case report and review of the literature. J Clin Endocrinol Metab. 2020;105(2):dgz067. doi: 10.1210/clinem/dgz067

 

  1. Shafi OM, Latief M. Early onset symptomatic neuropathy in a child with type 1 diabetes mellitus. Diabetes Metab Syndr. 2017;11 Suppl 1:S477-S479. doi: 10.1016/j.dsx.2017.03.039

 

  1. van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain-Barré syndrome: Pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10(8):469-482. doi: 10.1038/nrneurol.2014.121

 

  1. McGrogan A, Madle GC, Seaman HE, de Vries CS. The epidemiology of Guillain-Barré syndrome worldwide. A systematic literature review. Neuroepidemiology. 2009;32(2):150-163. doi: 10.1159/000184748

 

  1. Sejvar JJ, Baughman AL, Wise M, Morgan OW. Population incidence of Guillain-Barré syndrome: A systematic review and meta-analysis. Neuroepidemiology. 2011;36(2):123-133. doi: 10.1159/000324710

 

  1. Rajabally YA, Uncini A. Outcome and its predictors in Guillain-Barre syndrome. J Neurol Neurosurg Psychiatry. 2012;83(7):711-718. doi: 10.1136/jnnp-2011-301882

 

  1. Roodbol J, de Wit MY, van den Berg B, et al. Diagnosis of Guillain-Barré syndrome in children and validation of the Brighton criteria. J Neurol. 2017;264(5):856-861. doi: 10.1007/s00415-017-8429-8

 

  1. Ryan MM. Pediatric Guillain-Barré syndrome. Curr Opin Pediatr. 2013;25(6):689-693. doi: 10.1097/MOP.0b013e328365ad3f.

 

  1. Fokke C, van den Berg B, Drenthen J, Walgaard C, van Doorn PA, Jacobs BC. Diagnosis of Guillain-Barré syndrome and validation of Brighton criteria. Brain. 2014;137(Pt 1):33-43. doi: 10.1093/brain/awt285

 

  1. Sciacca G, Nicoletti A, Fermo SL, Mostile G, Giliberto C, Zappia M. Looks can be deceiving: Three cases of neurological diseases mimicking Guillain-Barrè syndrome. Neurol Sci. 2016;37(4):541-545. doi: 10.1007/s10072-015-2450-4

 

  1. Verboon C, van Doorn PA, Jacobs BC. Treatment dilemmas in Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry. 2017;88(4):346-352. doi: 10.1136/jnnp-2016-314862

 

  1. Korinthenberg R, Trollmann R, Felderhoff-Müser U, et al. Diagnosis and treatment of Guillain-Barré syndrome in childhood and adolescence: An evidence- and consensus-based guideline. Eur J Paediatr Neurol. 2020;25:5-16. doi: 10.1016/j.ejpn.2020.01.003

 

  1. Devi AK, Randhawa MS, Bansal A, et al. Long-term neurological, behavioral, functional, quality of life, and school performance outcomes in children with Guillain- Barré syndrome admitted to PICU. Pediatr Neurol. 2023;140:18-24. doi: 10.1016/j.pediatrneurol.2022.11.002

 

  1. Leonhard SE, Mandarakas MR, Gondim FAA, et al. Diagnosis and management of Guillain-Barré syndrome in ten steps. Nat Rev Neurol. 2019;15(11):671-683. doi: 10.1038/s41582-019-0250-9

 

  1. Iijima M, Koike H, Hattori N, et al. Prevalence and incidence rates of chronic inflammatory demyelinating polyneuropathy in the Japanese population. J Neurol Neurosurg Psychiatry. 2008;79(9):1040-1043. doi: 10.1136/jnnp.2007.128132

 

  1. Divino V, Mallick R, DeKoven M, Krishnarajah G. The economic burden of CIDP in the United States: A case-control study. PLoS One. 2018;13(10):e0206205. doi: 10.1371/journal.pone.0206205

 

  1. Basta I, Delic N, Gunjic I, et al. Chronic inflammatory demyelinating polyradiculoneuropathy: Diagnostic problems in clinical practice in Serbia. J Peripher Nerv Syst. 2023;28(2):226-236. doi: 10.1111/jns.12537

 

  1. Potulska-Chromik A, Ryniewicz B, Aragon-Gawinska K, et al. Are electrophysiological criteria useful in distinguishing childhood demyelinating neuropathies? J Peripher Nerv Syst. 2016;21(1):22-6. doi: 10.1111/jns.12152. Erratum in: J Peripher Nerv Syst. 2016;21(2):117. doi: 10.1111/jns.12174

 

  1. Harada Y, Herrmann DN, Logigian EL. Pediatric CIDP: Clinical features and response to treatment. J Clin Neuromuscul Dis. 2017;19(2):57-65. doi: 10.1097/CND.0000000000000179

 

  1. Rogers AB, Zaidman CM, Connolly AM. Pulse oral corticosteroids in pediatric chronic inflammatory demyelinating polyneuropathy. Muscle Nerve. 2020;62(6):705-709. doi: 10.1002/mus.27058

 

  1. Chauvet E, Blanchard Rohner G, Manel V, Delmont E, Boucraut J, Garcia-Tarodo S. Autoantibodies to a nodal isoform of neurofascin in pediatric chronic inflammatory demyelinating polyneuropathy. Child Neurol Open. 2023;10:2329048X221149618. doi: 10.1177/2329048X221149618

 

  1. Colvin LA. Chemotherapy-induced peripheral neuropathy: Where are we now? Pain. 2019;160 Suppl 1(Suppl 1):S1-S10. doi: 10.1097/j.pain.0000000000001540

 

  1. Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci. 2017;10:174. doi: 10.3389/fnmol.2017.00174

 

  1. Smith EML, Kuisell C, Kanzawa-Lee GA, et al. Approaches to measure paediatricchemotherapy-induced peripheral neurotoxicity: A systematic review. Lancet Haematol. 2020;7(5):e408-e417. doi: 10.1016/S2352-3026(20)30064-8

 

  1. Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci. 2022;9:1015746. doi: 10.3389/fmolb.2022.1015746

 

  1. Washist R, Steventon D, Samuelson P, Anderson B, Berg- Poppe P, Milanovich S. A scoping review of chemotherapy-induced peripheral neuropathy-related gait abnormalities in children with cancer. Pediatr Phys Ther. 2025;37(1):57-63. doi: 10.1097/PEP.0000000000001156

 

  1. Smith EML, Kuisell C, Cho Y, et al. Characteristics and patterns of pediatric chemotherapy-induced peripheral neuropathy: A systematic review. Cancer Treat Res Commun. 2021;28:100420. doi: 10.1016/j.ctarc.2021.100420

 

  1. Desai N, Arora N, Gupta A. Chemotherapy-induced peripheral neuropathy. JAMA Intern Med. 2022;182(7): 766-767. doi: 10.1001/jamainternmed.2022.1812

 

  1. Kerckhove N, Collin A, Condé S, Chaleteix C, Pezet D, Balayssac D. Long-term effects, pathophysiological mechanisms, and risk factors of chemotherapy-induced peripheral neuropathies: A comprehensive literature review. Front Pharmacol. 2017;8:86. doi: 10.3389/fphar.2017.00086

 

  1. Kandula T, Park SB, Cohn RJ, Krishnan AV, Farrar MA. Pediatric chemotherapy induced peripheral neuropathy: A systematic review of current knowledge. Cancer Treat Rev. 2016;50:118-128. doi: 10.1016/j.ctrv.2016.09.005

 

  1. Smolik S, Arland L, Hensley MA, et al. Assessment tools for peripheral neuropathy in pediatric oncology: A systematic review from the children’s oncology group. J Pediatr Oncol Nurs. 2018;35(4):267-275. doi: 10.1177/1043454218762705

 

  1. Johnston DL, Sung L, Stark D, Frazier AL, Rosenberg AR. A systematic review of patient-reported outcome measures of neuropathy in children, adolescents and young adults. Support Care Cancer. 2016;24(9):3723-3728. doi: 10.1007/s00520-016-3199-x

 

  1. Belsky JA, Dupuis LL, Sung L, et al. Practice patterns in the diagnosis and management of chemotherapy-induced peripheral neuropathy in adolescents and young adults with cancer: A survey of oncologists. Support Care Cancer. 2025;33(4):350. doi: 10.1007/s00520-025-09387-9

 

  1. Saporta AS, Sottile SL, Miller LJ, Feely SM, Siskind CE, Shy ME. Charcot-Marie-Tooth disease subtypes and genetic testing strategies. Ann Neurol. 2011;69(1):22-33. doi: 10.1002/ana.22166

 

  1. Weis J, Claeys KG, Roos A, et al. Towards a functional pathology of hereditary neuropathies. Acta Neuropathol. 2017;133(4):493-515. doi: 10.1007/s00401-016-1645-y

 

  1. Nakagawa M. Hereditary neuropathy: Recent advance. Rinsho Shinkeigaku. 2008;48(11):1019-1022. doi: 10.5692/clinicalneurol.48.1019

 

  1. De Sandre-Giovannoli A, Chaouch M, Boccaccio I, et al. Phenotypic and genetic exploration of severe demyelinating and secondary axonal neuropathies resulting from GDAP1 nonsense and splicing mutations. J Med Genet. 2003;40(7):e87. doi: 10.1136/jmg.40.7.e87

 

  1. Rudnik-Schöneborn S, Auer-Grumbach M, Senderek J. Charcot-Marie-Tooth disease and hereditary motor neuropathies - Update 2020. Med Gen. 2020;32(3):207-219. doi: 10.1515/medgen-2020-2038

 

  1. Shy ME, Rose MR. Charcot-Marie-Tooth disease impairs quality of life: Why? And how do we improve it? Neurology. 2005;65(6):790-791. doi: 10.1212/01.wnl.0000181027.21574.df

 

  1. Morena J, Gupta A, Hoyle JC. Charcot-Marie-Tooth: From molecules to therapy. Int J Mol Sci. 2019;20(14):3419. doi: 10.3390/ijms20143419

 

  1. Tazir M, Hamadouche T, Nouioua S, Mathis S, Vallat JM. Hereditary motor and sensory neuropathies or Charcot- Marie-Tooth diseases: An update. J Neurol Sci. 2014;347(1-2): 14-22. doi: 10.1016/j.jns.2014.10.013

 

  1. Bacquet J, Stojkovic T, Boyer A, et al. Molecular diagnosis of inherited peripheral neuropathies by targeted next-generation sequencing: Molecular spectrum delineation. BMJ Open. 2018;8(10):e021632. doi: 10.1136/bmjopen-2018-021632

 

  1. Fridman V, Saporta MA. Mechanisms and treatments in demyelinating CMT. Neurotherapeutics. 2021;18(4): 2236-2268. doi: 10.1007/s13311-021-01145-z

 

  1. Miniou P, Fontes M. Therapeutic development in Charcot Marie Tooth type 1 disease. Int J Mol Sci. 2021;22(13):6755. doi: 10.3390/ijms22136755

 

  1. Züchner S, Vance JM. Mechanisms of disease: A molecular genetic update on hereditary axonal neuropathies. Nat Clin Pract Neurol. 2006;2(1):45-53. doi: 10.1038/ncpneuro0071

 

  1. McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth disease: From common pathogenic mechanisms to emerging treatment opportunities. Neurotherapeutics. 2021;18(4):2269-2285. doi: 10.1007/s13311-021-01099-2

 

  1. Saporta MA, Dang V, Volfson D, et al. Axonal Charcot- Marie-Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties. Exp Neurol. 2015;263:190-199. doi: 10.1016/j.expneurol.2014.10.005

 

  1. Hoffman EM, Staff NP, Robb JM, St Sauver JL, Dyck PJ, Klein CJ. Impairments and comorbidities of polyneuropathy revealed by population-based analyses. Neurology. 2015;84(16):1644-1651. doi: 10.1212/WNL.0000000000001492

 

  1. Visser NA, Notermans NC, Linssen RS, van den Berg LH, Vrancken AF. Incidence of polyneuropathy in Utrecht, the Netherlands. Neurology. 2015;84(3):259-264. doi: 10.1212/WNL.0000000000001160

 

  1. Cortese A, Zhu Y, Rebelo AP, et al. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat Genet. 2020;52(5):473-481. doi: 10.1038/s41588-020-0615-4. Erratum in: Nat Genet. 2020;52(6):640. doi: 10.1038/s41588-020-0649-7

 

  1. Salvalaggio A, Cacciavillani M, Tierro B, et al. Nerve ultrasound in CANVAS-spectrum disease: Reduced nerve size distinguishes genetically confirmed CANVAS from other axonal polyneuropathies. J Peripher Nerv Syst. 2024;29(4):464-471. doi: 10.1111/jns.12655

 

  1. Murin PJ, Khasiyev F, Profirovic J, Fedorova M, Kafaie J. Comparing FGFR-3 and TS-HDS seropositive small fiber neuropathy: Unique patient features, symptoms, laboratory, and nerve conduction study findings. J Clin Neuromuscul Dis. 2024;25(4):171-177. doi: 10.1097/CND.0000000000000478

 

  1. Morelli L, Serra L, Ricciardiello F, et al. The role of antibodies in small fiber neuropathy: A review of currently available evidence. Rev Neurosci. 2024;35(8):877-893. doi: 10.1515/revneuro-2024-002

 

  1. Waung MW, Ma F, Wheeler AG, Zai, CC, So J. The diagnostic landscape of adult neurogenetic disorders. Biology (Basel). 2023;12(12):1459. doi: 10.3390/biology12121459

 

  1. Maria Ramos-Platt L. Clinical Cases in Pediatric Peripheral Neuropathy. London: InTechopen; 2012. doi: 10.5772/27105

 

  1. Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci. 2022;9:1015746. doi: 10.3389/fmolb.2022.1015746
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing