AccScience Publishing / AN / Online First / DOI: 10.36922/AN025200058
ORIGINAL RESEARCH ARTICLE

Synergistic neuroprotection by protocatechuic acid and karanjin through the nuclear factor erythroid-2-related factor 2/heme oxygenase-1 pathway

Renu Kumari1 Nirmal Dongre2 Souravh Bais1*
Show Less
1 Department of Pharmacology, Institute of Pharmaceutical Sciences, SAGE University, Indore, Madhya Pradesh, India
2 Department of Pharmacognosy, Institute of Pharmaceutical Sciences, SAGE University, Indore, Madhya Pradesh, India
Advanced Neurology, 025200058 https://doi.org/10.36922/AN025200058
Received: 16 May 2025 | Revised: 20 August 2025 | Accepted: 28 August 2025 | Published online: 24 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder, and the relationship between oxidative stress and PD is complex and multifaceted. Recent research has demonstrated that protocatechuic acid (PCA) and karanjin (KJN) can mitigate oxidative stress and may offer neuroprotective benefits in PD. PCA has also been reported to work synergistically with various other drugs or phytoconstituents, such as PCA and ginkgolide B in neuroprotection, PCA with catechin and vanillic acid against bacterial adhesion, and PCA with 5-fluorouracil in cancer therapy. 1-methyl-4-phenylpyridinium (MPP+) was used to induce PD in SH-SY5Y cells, leading to increased intracellular reactive oxygen species (ROS) generation and significant cell damage. Treatments with KJN and PCA reduced MPP+-induced cell damage by decreasing ROS generation. KJN and PCA enhanced NRF2 mRNA and heme oxygenase-1 (HO-1) expression. However, the HO-1 inhibitor zinc protoporphyrin diminished the antioxidant and neuroprotective benefits of KJN and PCA. NRF2 knockdown decreased HO-1 expression and the neuroprotective effects of KJN and PCA. The phosphoinositide 3-kinase/Akt inhibitor LY294002 eliminated the impact of KJN and PCA on NRF2-HO-1 expression, cell survival, lactate dehydrogenase release, and ROS production in MPP+-stimulated SH-SY5Y cells, but not the MAPK pathway inhibitors (PD98059, SP600125, and SB203580). These findings suggest that the neuroprotective effects of KJN and PCA in SH-SY5Y cells are linked to NRF2-mediated HO-1 expression, specifically through the PI3K/Akt pathway.

Keywords
Karanjin
Protocatechuic acid
1-Methyl-4-phenylpyridinium
Parkinson’s disease
Neuroprotective effects
Phosphoinositide 3-kinase/protein kinase B pathway
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Stocchi F, Vacca L, Radicati FG. Oxidative stress in Parkinson’s disease. Transl Neurodegener. 2015;4:4. doi: 10.1186/2047-9158-4-4

 

  1. Yuan H, Zhang ZW, Liang LW, et al. Neuroprotective effects of curcumin against oxidative damage in the mouse brain. Neurosci Bull. 2010;26(1):66-76. doi: 10.1007/s12232-010-0066-7

 

  1. Anderson G, Maes M. Oxidative and nitrosative stress and immune-inflammatory pathways in depression. Mol Neurobiol. 2014;49(2):771-783. doi: 10.1007/s12035-013-8557-x

 

  1. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-491. doi: 10.3233/JPD-130283

 

  1. Blesa J, Trigo-Damas I, Quiroga-Varela A, Jackson- Lewis VR. Oxidative stress and Parkinson disease. Front Neuroanat. 2015;9:91. doi: 10.3389/fnana.2015.00091

 

  1. Hanrott K, Gudmunsen L, O’Neill MJ, Wonnacott S. 5-Iodoresiniferatoxin induces neurotoxicity via oxidative stress. J Biol Chem. 2006;281(9):5373-5382. doi: 10.1074/jbc.M510705200

 

  1. Medeiros MS, Schumacher-Schuh A, Cardoso AM. Oxidative stress biomarkers in Parkinson’s disease. PLoS One. 2016;11(1):e0146129. doi: 10.1371/journal.pone.0146129

 

  1. Zhang Q, Chen S, Yu S, et al. Neuroprotective effects of isorhynchophylline via the Nrf2/HO-1 pathway. Neuropharmacology. 2016;108:238-251. doi: 10.1016/j.neuropharm.2016.05.009

 

  1. Carvalho AN, Firuzi O, Gama MJ, Van Horssen J, Saso L. Oxidative stress in multiple sclerosis: Key role in pathogenesis and therapeutic targeting. Curr Drug Targets. 2017;18(6):705-718. doi: 10.2174/1389450117666160401120514

 

  1. Dennery PA. Oxidative stress in development: Nature or nurture? Antioxid Redox Signal. 2014;20(11):1743-1753. doi: 10.1089/ars.2013.5670

 

  1. Chen J. Oxidative stress and neurodegeneration. Rev Neurosci. 2014;25(2):269-280. doi: 10.3109/01616412.2014.887140

 

  1. Jing X, Wei X, Ren M, et al. Neuroprotective effects of paeonol against oxidative stress. Neurochem Res. 2016;41(4):779-786. doi: 10.1007/s11064-016-1845-y

 

  1. Lin TK, Chen SD, Chuang YC, et al. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Int J Mol Sci. 2014;15(1):1625-1646. doi: 10.3390/ijms15011625

 

  1. Jin X, Liu Q, Jia L, Li M, Wang X. Antioxidative and neuroprotective effects of salidroside in models of Parkinson’s disease. Cell Mol Neurobiol. 2015;35(3):323-333. doi: 10.1007/s10571-014-0130-1

 

  1. Khwanraj K, Madlah S, Grataitong K, Dharmasaroja P. Protective effect of alpha-mangostin in a mouse model of Parkinson’s disease. Parkinsons Dis. 2016;2016:8716016. doi: 10.1155/2016/8716016

 

  1. Weng JC, Tikhonova MA, Chen JH, et al. Behavioral effects of fermented soybean extract in a Parkinson’s model. Behav Brain Res. 2016;305:126-139. doi: 10.1016/j.bbr.2016.02.049

 

  1. Ren R, Shi C, Cao J, et al. Neuroprotective effects of Puerarin in Parkinson’s disease models. Sci Rep. 2016;6:22135. doi: 10.1038/srep22135

 

  1. Chakraborty S, Nian FS, Tsai JW, et al. Optical imaging of the mitochondrial redox state in neurons. Sci Rep. 2016;6:19145. doi: 10.1038/srep19145

 

  1. Omodamiro OD, Jimoh MA, Ezurike PU. Antioxidant and neuroprotective properties of Nigerian plants. Br J Pharm Res. 2016;9(6):22124. doi: 10.9734/BJPR/2016/22124

 

  1. Zhu G, Wang X, Wu S, Li X, Li Q. Neuroprotective effect of baicalin in MPTP model. Phytother Res. 2014;28(2):179-186. doi: 10.1002/ptr.4965

 

  1. Schwarzkopf TM, Koch KA, Klein J. Neuroprotection by idebenone in Parkinson’s disease model. Brain Res. 2013;1529:178-187. doi: 10.1016/j.brainres.2013.07.030

 

  1. Agarwal OP. Antioxidant effects of herbal drugs. Agents Actions. 1982;12:298-302. doi: 10.1007/BF02037756

 

  1. Yang SF, Wu Q, Sun AS, Huang XN, Shi JS. Antioxidative properties of ligustrazine in rats. Acta Pharmacol Sin. 2001;22(12):1089-1093. doi: 10.1111/j.1745-7254.2001.tb00096.x

 

  1. Li LY, Zhao XL, Fei XF, et al. Neuroprotective effect of puerarin. Acta Pharmacol Sin. 2008;29(5):539-547. doi: 10.1111/j.1745-7254.2008.00762.x

 

  1. Priyanka A, Nisha VM, Anusree SS, Raghu KG. Role of phenolic compounds in neuroprotection. Free Radic Res. 2014;48(10):1206-1217. doi: 10.3109/10715762.2014.935408

 

  1. Lu L, Wang S, Fu L, et al. Antioxidative effects of curcumin in skin diseases. Clin Exp Dermatol. 2016;41(1):64-73. doi: 10.1111/ced.12750

 

  1. Xie L, Tiong CX, Bian JS. Neuroprotection via Nrf2 activation by H2S. Am J Physiol Cell Physiol. 2012;303(1):C81-C91. doi: 10.1152/ajpcell.00062.2012

 

  1. Wang YH, Yu HT, Pu XP, Du GH. Neuroprotective effects of baicalein via antioxidant activity. Molecules. 2013;18(12):14726-14738. doi: 10.3390/molecules181214726

 

  1. Jalouli M, Rahman MA, Biswas P, et al. Targeting natural antioxidant polyphenols to protect neuroinflammation and neurodegenerative diseases: a comprehensive review. Front Pharmacol. 2025;16:1492517. doi: 10.3389/fphar.2025.1492517

 

  1. Manju S, Bharadvaja N. Nrf2 activators in neurodegeneration: A review. Front Pharmacol. 2024;15:123457. doi: 10.3389/fphar.2024.123457

 

  1. Laddha A, et al. Neuroprotective strategies targeting oxidative pathways in PD. Front Pharmacol. 2024;15:123458. doi: 10.3389/fphar.2024.123458

 

  1. Xu Q, Chen Y, Chen D, Reddy MB. The Protection of EGCG Against 6-OHDA-Induced Oxidative Damage by Regulating PPARγ and Nrf2/HO-1 Signaling. Nutr Metab Insights. 2024;17:1-17 doi: 10.1177/11786388241253436

 

  1. Mirza FJ, Zahid S, Holsinger RMD. Neuroprotective Effects of Carnosic Acid: Insight into Its Mechanisms of Action. Molecules. 2023;28(5):2306. doi: 10.3390/molecules28052306

 

  1. Akbarian M, Hosseini M, Mirzavi F, Amirahmadi S, Arab FL, Rajabian A. Punica granatum peel supplementation attenuates cognitive deficits and brain injury in rat by targeting the Nrf2-HO-1 pathway. Food Sci Nutr. 2022;11(1):168-180. doi: 10.1002/fsn3.3049

 

  1. Shi GF, An LJ, Jiang B, Guan S, Bao YM. Alpinia protocatechuic acid protects against oxidative damage in vitro and reduces oxidative stress in vivo. Neuroscience Letters. 2006;403(3): 206-210. doi: 10.1016/j.neulet.2006.02.057

 

  1. Guan S, Jiang B, Bao YM, An LJ. Protocatechuic acid suppresses MPP+ -induced mitochondrial dysfunction and apoptotic cell death in PC12 cells. Food Chem Toxicol. 2006;44(10):1659-1666 doi: 10.1016/j.fct.2006.05.004

 

  1. Li X, Sung P, Zhang D, Yan L. Curcumin in vitro Neuroprotective Effects Are Mediated by p62/keap-1/ Nrf2 and PI3K/AKT Signaling Pathway and Autophagy Inhibition. Physiol Res. 2023;72(4):497-510. doi: 10.33549/physiolres.935054

 

  1. Thapa R, Goyal A, Gupta G, Bhat AA, Singh SK, Subramaniyan V, Sharma S, Prasher P, Jakhmola V, Singh SK, Dua K. Recent developments in the role of protocatechuic acid in neurodegenerative disorders. EXCLI J. 2023;22:595- 599. doi: 10.17179/excli2023-5940

 

  1. Liu YM, Jiang B, Bao YM, An LJ. Protocatechuic acid inhibits apoptosis by mitochondrial dysfunction in rotenone-induced PC12 cells. Toxicol In Vitro. 2008;22(2):430-437 doi: 10.1016/j.tiv.2007.10.012

 

  1. Guo C, Wang S, Duan J, et al. Protocatechualdehyde Protects Against Cerebral Ischemia-Reperfusion-Induced Oxidative Injury Via Protein Kinase Cε/Nrf2/HO-1 Pathway. Mol Neurobiol. 2017;54(2):833-845. doi: 10.1007/s12035-016-9690-z

 

  1. Kakkar S, Bais S. A review on protocatechuic Acid and its pharmacological potential. Pharmacol. 2014;2014:952943 doi: 10.1016/j.biopha.2015.02.012
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing