Unveiling the complexity of acute ischemic stroke through imaging and neuropathological insights

Effective management of acute ischemic stroke requires timely recanalization of occluded cerebral vessels, restoration of perfusion to the ischemic penumbra, and minimization of infarct volume. At present, clinicians rely heavily on various imaging modalities to evaluate the ischemic penumbra and core. However, the current imaging techniques often fail to accurately reflect the underlying cellular and histopathological changes associated with ischemia and lack standardized assessment criteria. This may lead to inconsistencies in diagnosis and treatment, ultimately compromising patient outcomes. Consequently, there is an urgent need to refine these imaging methods to better reflect the dynamic pathophysiology of cerebral ischemia. This review addresses these critical issues by first examining the shortcomings of current imaging approaches in assessing the ischemic penumbra and core. It highlights the discrepancies in these assessments and their implications for clinical practice. Furthermore, it proposes that integrating quantitative measures of salvageable ischemic regions with imaging-based molecular markers can enhance the precision of delineating the ischemic penumbra and core, thereby facilitating improved therapeutic decision-making. Finally, this review explores emerging biomarkers identified through the analysis of molecular and cellular mechanisms triggered by ischemia and hypoxia, underscoring their potential role in future diagnostics. Future imaging methods should strive to bridge the gap between microscopic cellular and molecular events and reliable imaging markers, ultimately enabling the identification of ischemic regions through biomarkers.
- Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11-21. doi: 10.1056/NEJMoa1706442
- Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708-718. doi: 10.1056/NEJMoa1713973
- Yoshimura S, Sakai N, Yamagami H, et al. Endovascular therapy for acute stroke with a large ischemic region. N Engl J Med. 2022;386(14):1303-1313. doi: 10.1056/NEJMoa2118191
- Huo X, Ma G, Tong X, et al. Trial of endovascular therapy for acute ischemic stroke with large infarct. N Engl J Med. 2023;388(14):1272-1283. doi: 10.1056/NEJMoa2213379
- Sarraj A, Hassan AE, Abraham MG, et al. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med. 2023;388(14):1259-1271. doi: 10.1056/NEJMoa2214403
- Bendszus M, Fiehler J, Subtil F, et al. Endovascular thrombectomy for acute ischaemic stroke with established large infarct: Multicentre, open-label, randomised trial. Lancet. 2023;402(10414):1753-1763. doi: 10.1016/s0140-6736(23)02032-9
- Yoo AJ, Zaidat OO, Sheth SA, et al. Thrombectomy for stroke with large infarct on noncontrast CT: The TESLA randomized clinical trial. JAMA. 2024;332(16):1355-1366. doi: 10.1001/jama.2024.13933
- Costalat V, Jovin TG, Albucher JF, et al. Trial of thrombectomy for stroke with a large infarct of unrestricted size. N Engl J Med. 2024;390(18):1677-1689. doi: 10.1056/NEJMoa2314063
- Sarraj A, Hassan AE, Abraham MG, et al. Endovascular thrombectomy for large ischemic stroke across ischemicinjury and penumbra profiles. JAMA. 2024;331(9):750-763. doi: 10.1001/jama.2024.0572
- Chen C, Parsons MW, Levi CR, et al. Exploring the relationship between ischemic core volume and clinical outcomes after thrombectomy or thrombolysis. Neurology. 2019;93(3):e283-e292. doi: 10.1212/wnl.0000000000007768
- Broocks G, McDonough RV, Bechstein M, et al. Thrombectomy in patients with ischemic stroke without salvageable tissue on CT perfusion. Stroke. 2024;55(5):1317-1325. doi: 10.1161/strokeaha.123.044916
- Inoue M, Yoshimoto T, Yamagami H, et al. Expanding the treatable imaging profile in patients with large ischemic stroke: Subanalysis from a randomized clinical trial. Stroke. 2024;55(7):1730-1738. doi: 10.1161/strokeaha.124.046828
- Huo X, Nguyen TN, Sun D, et al. Association of mismatch profiles and clinical outcome from endovascular therapy in large infarct: A post-hoc analysis of the ANGEL-ASPECT trial. Ann Neurol. 2024;96(4):729-738. doi: 10.1002/ana.27017
- Nguyen TN, Abdalkader M, Nagel S, et al. Noncontrast computed tomography vs computed tomography perfusion or magnetic resonance imaging selection in late presentation of stroke with large-vessel occlusion. JAMA Neurol. 2022;79(1):22-31. doi: 10.1001/jamaneurol.2021.4082
- Sarraj A, Campbell BCV. Does reperfusion benefit patients without perfusion mismatch? Stroke. 2024;55(5):1326-1328. doi: 10.1161/strokeaha.124.046989
- Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2019;50(12):e344-e418. doi: 10.1161/str.0000000000000211
- Goyal M, Ospel JM, Menon B, et al. Challenging the ischemic core concept in acute ischemic stroke imaging. Stroke. 2020;51(10):3147-3155. doi: 10.1161/strokeaha.120.030620
- Kinouchi H, Sharp FR, Hill MP, Koistinaho J, Sagar SM, Chan PH. Induction of 70-kDa heat shock protein and hsp70 mRNA following transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1993;13(1):105-115. doi: 10.1038/jcbfm.1993.13
- Hemphill JC 3rd, Bleck T, Carhuapoma JR, et al. Is neurointensive care really optional for comprehensive stroke care? Stroke. 2005;36(11):2344-2345. doi: 10.1161/01.Str.0000185667.61420.94
- Kaufmann AM, Firlik AD, Fukui MB, Wechsler LR, Jungries CA, Yonas H. Ischemic core and penumbra in human stroke. Stroke. 1999;30(1):93-99. doi: 10.1161/01.str.30.1.93
- Baron JC, Marchal G. Ischemic core and penumbra in human stroke. Stroke. 1999;30(5):1150-1153.
- Moustafa RR, Baron JC. Pathophysiology of ischaemic stroke: Insights from imaging, and implications for therapy and drug discovery. Br J Pharmacol. 2008;153 Suppl 1(Suppl 1):S44-S54. doi: 10.1038/sj.bjp.0707530
- Konstas AA, Goldmakher GV, Lee TY, Lev MH. Theoretic basis and technical implementations of CT perfusion in acute ischemic stroke, part 1: Theoretic basis. AJNR Am J Neuroradiol. 2009;30(4):662-668. doi: 10.3174/ajnr.A1487
- Hacke W, Furlan AJ, Al-Rawi Y, et al. Intravenous desmoteplase in patients with acute ischaemic stroke selected by MRI perfusion-diffusion weighted imaging or perfusion CT (DIAS-2): A prospective, randomised, double-blind, placebo-controlled study. Lancet Neurol. 2009;8(2):141-150. doi: 10.1016/s1474-4422(08)70267-9
- Parsons M, Spratt N, Bivard A, et al. A randomized trial of tenecteplase versus alteplase for acute ischemic stroke. N Engl J Med. 2012;366(12):1099-1107. doi: 10.1056/NEJMoa1109842
- Ma H, Campbell BCV, Parsons MW, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380(19):1795-1803. doi: 10.1056/NEJMoa1813046
- Zhou Y, He Y, Campbell BCV, et al. Alteplase for acute ischemic stroke at 4.5 to 24 hours: The HOPE randomized clinical trial. JAMA. 2025;334:788-797. doi: 10.1001/jama.2025.12063
- Davis SM, Donnan GA, Parsons MW, et al. Effects of alteplase beyond 3 h after stroke in the echoplanar imaging thrombolytic evaluation trial (EPITHET): A placebo-controlled randomised trial. Lancet Neurol. 2008;7(4):299-309. doi: 10.1016/s1474-4422(08)70044-9
- Albers GW, Thijs VN, Wechsler L, et al. Magnetic resonance imaging profiles predict clinical response to early reperfusion: The diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. 2006;60(5):508-517. doi: 10.1002/ana.20976
- Lansberg MG, Straka M, Kemp S, et al. MRI profile and response to endovascular reperfusion after stroke (DEFUSE 2): A prospective cohort study. Lancet Neurol. 2012;11(10):860-867. doi: 10.1016/s1474-4422(12)70203-x
- Wu O, Christensen S, Hjort N, et al. Characterizing physiological heterogeneity of infarction risk in acute human ischaemic stroke using MRI. Brain. 2006;129(Pt 9):2384-2393. doi: 10.1093/brain/awl183
- Thomalla G, Simonsen CZ, Boutitie F, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611-622. doi: 10.1056/NEJMoa1804355
- Albers GW, Jumaa M, Purdon B, et al. Tenecteplase for stroke at 4.5 to 24 hours with perfusion-imaging selection. N Engl J Med. 2024;390(8):701-711. doi: 10.1056/NEJMoa2310392
- Xiong Y, Campbell BCV, Schwamm LH, et al. Tenecteplase for ischemic stroke at 4.5 to 24 hours without thrombectomy. N Engl J Med. 2024;391(3):203-212. doi: 10.1056/NEJMoa2402980
- Martins N, Aires A, Mendez B, et al. Ghost infarct core and admission computed tomography perfusion: Redefining the role of neuroimaging in acute ischemic stroke. Interv Neurol. 2018;7(6):513-521. doi: 10.1159/000490117
- Amukotuwa S, Straka M, Aksoy D, et al. Cerebral blood flow predicts the infarct core: New insights from contemporaneous diffusion and perfusion imaging. Stroke. 2019;50(10):2783-2789. doi: 10.1161/strokeaha.119.026640
- Xu K, Gu B, Zuo T, et al. Predictive value of Alberta stroke program early CT score for perfusion weighted imaging - diffusion weighted imaging mismatch in stroke with middle cerebral artery occlusion. Medicine (Baltimore). 2020;99(50):e23490. doi: 10.1097/md.0000000000023490
- Kniep HC, Gellißen S, Thomalla G, et al. Thrombectomy with low ASPECTS: The roles of infarct volume and postacute neurological status. Stroke. 2025;56(5):1116-1127. doi: 10.1161/strokeaha.124.050052
- Astrup J, Siesjö BK, Symon L. Thresholds in cerebral ischemia - the ischemic penumbra. Stroke. 1981;12(6):723-725. doi: 10.1161/01.str.12.6.723
- Morelli N, Colombi D, Michieletti E. Ischemic core estimation by CT perfusion: A matter of (rCBF) numbers. AJR Am J Roentgenol. 2023;221(2):284. doi: 10.2214/ajr.22.28902
- Kim N, Ryu WS, Ha SY, et al. Optimal cerebral blood flow thresholds for ischemic core estimation using computed tomography perfusion and diffusion-weighted imaging. Ann Neurol. 2025;97(5):919-929. doi: 10.1002/ana.27169
- Purushotham A, Campbell BC, Straka M, et al. Apparent diffusion coefficient threshold for delineation of ischemic core. Int J Stroke. 2015;10(3):348-353. doi: 10.1111/ijs.12068
- Vilela P, Rowley HA. Brain ischemia: CT and MRI techniques in acute ischemic stroke. Eur J Radiol. 2017;96:162-172. doi: 10.1016/j.ejrad.2017.08.014
- Rafael-Patiño J, Fischi-Gomez E, Madrona A, et al. Diffusion imaging protocol heterogeneity biases ischemic core volume, location, and clinical associations in acute stroke. Stroke. 2025;56(4):915-925. doi: 10.1161/strokeaha.124.047317
- Yoo AJ, Berkhemer OA, Fransen PSS, et al. Effect of baseline alberta stroke program early CT score on safety and efficacy of intra-arterial treatment: A subgroup analysis of a randomised phase 3 trial (MR CLEAN). Lancet Neurol. 2016;15(7):685-694. doi: 10.1016/s1474-4422(16)00124-1
- Powers WJ, Derdeyn CP, Biller J, et al. 2015 American Heart Association/American Stroke association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: A guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(10):3020-3035. doi: 10.1161/str.0000000000000074
- Gao J, Parsons MW, Kawano H, et al. Visibility of CT early ischemic change is significantly associated with time from stroke onset to baseline scan beyond the first 3 hours of stroke onset. J Stroke. 2017;19(3):340-346. doi: 10.5853/jos.2016.01424
- Albers GW, Goyal M, Jahan R, et al. Ischemic core and hypoperfusion volumes predict infarct size in SWIFT PRIME. Ann Neurol. 2016;79(1):76-89. doi: 10.1002/ana.24543
- Chalela JA, Kasner SE. The fogging effect. Neurology. 2000;55(2):315. doi: 10.1212/wnl.55.2.315
- Shen Q, Fisher M, Sotak CH, Duong TQ. Effects of reperfusion on ADC and CBF pixel-by-pixel dynamics in stroke: Characterizing tissue fates using quantitative diffusion and perfusion imaging. J Cereb Blood Flow Metab. 2004;24(3):280-290. doi: 10.1097/01.Wcb.0000110048.43905.E5
- Rao V, Christensen S, Yennu A, et al. Ischemic core and hypoperfusion volumes correlate with infarct size 24 hours after randomization in DEFUSE 3. Stroke. 2019;50(3):626-631. doi: 10.1161/strokeaha.118.023177
- Frindel C, Rouanet A, Giacalone M, et al. Validity of shape as a predictive biomarker of final infarct volume in acute ischemic stroke. Stroke. 2015;46(4):976-981. doi: 10.1161/strokeaha.114.008046
- Sarraj A, Campbell BCV, Christensen S, et al. Accuracy of CT perfusion-based core estimation of follow-up infarction: Effects of time since last known well. Neurology. 2022;98(21):e2084-e2096. doi: 10.1212/wnl.0000000000200269
- Hoving JW, Marquering HA, Majoie C, et al. Volumetric and spatial accuracy of computed tomography perfusion estimated ischemic core volume in patients with acute ischemic stroke. Stroke. 2018;49(10):2368-2375. doi: 10.1161/strokeaha.118.020846
- Broocks G, Minnerup J, McDonough R, Flottmann F, Kemmling A. Letter by Broocks et al regarding article, “challenging the ischemic core concept in acute ischemic stroke imaging”. Stroke. 2021;52(2):e76-e77. doi: 10.1161/strokeaha.120.032707
- Nägele FL, Scheldeman L, Wouters A, et al. Blood-brain barrier leakage in the penumbra is associated with infarction on follow-up imaging in acute ischemic stroke. Stroke. 2025;56(7):1832-1842. doi: 10.1161/strokeaha.124.050171
- Gürer G, Gursoy-Ozdemir Y, Erdemli E, Can A, Dalkara T. Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathol. 2009;19(4):630-641. doi: 10.1111/j.1750-3639.2008.00226.x
- Ospel JM, Fisher M, Goyal M. Response by Ospel et al to letter regarding article, “challenging the ischemic core concept in acute ischemic stroke imaging”. Stroke. 2021;52(2):e78. doi: 10.1161/strokeaha.120.033573
- Yogendrakumar V, Campbell BCV, Johns HT, et al. Association of ischemic core hypodensity with thrombectomy treatment effect in large core stroke: A secondary analysis of the SELECT2 randomized controlled trial. Stroke. 2025;56(6):1366-1375. doi: 10.1161/strokeaha.124.048899
- Kroll H, Zaharchuk G, Christen T, Heit JJ, Iv M. Resting-state BOLD MRI for perfusion and ischemia. Top Magn Reson Imaging. 2017;26(2):91-96. doi: 10.1097/rmr.0000000000000119
- Yu M, Wu H, Hu H, et al. Emerging near-infrared targeting diagnostic and therapeutic strategies for ischemic cardiovascular and cerebrovascular diseases. Acta Biomater. 2024. doi: 10.1016/j.actbio.2024.11.027
- Yang Y, Chen Y, Pei P, et al. Fluorescence-amplified nanocrystals in the second near-infrared window for in vivo real-time dynamic multiplexed imaging. Nat Nanotechnol. 2023;18(10):1195-1204. doi: 10.1038/s41565-023-01422-2
- Sun YY, Zhu HJ, Du Y, et al. A novel NIR-II albumin-escaping probe for cerebral arteries and perfusion imaging in stroke mice model. Biomaterials. 2024;311:122664. doi: 10.1016/j.biomaterials.2024.122664
- Zhu HJ, Sun YY, Du Y, et al. Albumin-seeking near-infrared-II probe evaluating blood-brain barrier disruption in stroke. J Nanobiotechnology. 2024;22(1):742. doi: 10.1186/s12951-024-02973-9
- Olthuis SGH, Pinckaers FME, Robbe MMQ, et al. CT perfusion imaging after selection for late-window endovascular stroke treatment: Secondary analysis of the MR CLEAN-LATE randomized trial. JAMA Neurol. 2025;82(6):589-596. doi: 10.1001/jamaneurol.2025.0716
- Demeestere J, Verhaaren BFJ, Christensen S, et al. Underestimation of follow-up infarct volume by acute CT perfusion imaging. Neurology. 2025;104(7):e213439. doi: 10.1212/wnl.0000000000213439
- Pensato U, Demchuk AM, Menon BK, et al. Cerebral infarct growth: Pathophysiology, pragmatic assessment, and clinical implications. Stroke. 2025;56(1):219-229. doi: 10.1161/strokeaha.124.049013
- Benali F, Singh N, Fladt J, et al. Mediation of age and thrombectomy outcome by neuroimaging markers of frailty in patients with stroke. JAMA Netw Open. 2024;7(1):e2349628. doi: 10.1001/jamanetworkopen.2023.49628
- Rabinstein AA, Albers GW, Brinjikji W, Koch S. Factors that may contribute to poor outcome despite good reperfusion after acute endovascular stroke therapy. Int J Stroke. 2019;14(1):23-31. doi: 10.1177/1747493018799979
- Zhou JY, Shi YB, Xia C, et al. Beyond collaterals: Brain frailty additionally improves prediction of clinical outcome in acute ischemic stroke. Eur Radiol. 2022;32(10):6943-6952. doi: 10.1007/s00330-022-08792-6
- Fladt J, Benali F, Jaroenngarmsamer T, et al. Impact of brain frailty on clinical presentation and neurologic recovery in acute ischemic stroke patients undergoing thrombectomy. Neurology. 2025;104(10):e213619. doi: 10.1212/wnl.0000000000213619
- Broocks G, Kemmling A, Kniep H, et al. Edema reduction versus penumbra salvage: Investigating treatment effects of mechanical thrombectomy in ischemic stroke. Ann Neurol. 2024;95:137-145. doi: 10.1002/ana.26802
- Ballout AA, Liebeskind DS, Jovin TG, Najjar S. The imaging-neuropathological gap in acute large vessel occlusive stroke. Stroke. 2024;55(12):2909-2920. doi: 10.1161/strokeaha.124.047384
- Cheng X, Shi J, Wu H, Zhu W, Lu G. Review of net water uptake in the management of acute ischemic stroke. Eur Radiol. 2022;32(8):5517-5524. doi: 10.1007/s00330-022-08658-x
- Broocks G, Leischner H, Hanning U, et al. Lesion age imaging in acute stroke: Water uptake in CT versus DWI-FLAIR mismatch. Ann Neurol. 2020;88(6):1144-1152. doi: 10.1002/ana.25903
- The stroke care revolution. Lancet Neurol. 2015;14(4):341. doi: 10.1016/s1474-4422(15)70023-2
- Ghozy S, Amoukhteh M, Hasanzadeh A, et al. Net water uptake as a predictive neuroimaging marker for acute ischemic stroke outcomes: A meta-analysis. Eur Radiol. 2024;34(8):5308-5316. doi: 10.1007/s00330-024-10599-6
- Zhang K, Sejnowski TJ. A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A. 2000;97(10):5621-5626. doi: 10.1073/pnas.090504197
- Chen C, Bivard A, Lin L, Levi CR, Spratt NJ, Parsons MW. Thresholds for infarction vary between gray matter and white matter in acute ischemic stroke: A CT perfusion study. J Cereb Blood Flow Metab. 2019;39(3):536-546. doi: 10.1177/0271678x17744453
- Stebbins GT, Nyenhuis DL, Wang C, et al. Gray matter atrophy in patients with ischemic stroke with cognitive impairment. Stroke. 2008;39(3):785-793. doi: 10.1161/strokeaha.107.507392
- Chen B, Zhou H, Liu X, et al. Correlations of gray matter volume with peripheral cytokines in Parkinson’s disease. Neurobiol Dis. 2024;201:106693. doi: 10.1016/j.nbd.2024.106693
- Kraguljac NV, McDonald WM, Widge AS, Rodriguez CI, Tohen M, Nemeroff CB. Neuroimaging biomarkers in schizophrenia. Am J Psychiatry. 2021;178(6):509-521. doi: 10.1176/appi.ajp.2020.20030340
- Deininger-Czermak E, Spencer L, Zoelch N, et al. Magnetic resonance imaging of regional gray matter volume in persons who died by suicide. Mol Psychiatry. 2025;30(3):1029-1033. doi: 10.1038/s41380-024-02730-2
- Voorter PHM, Stringer MS, van Dinther M, et al. Heterogeneity and penumbra of white matter hyperintensities in small vessel diseases determined by quantitative MRI. Stroke. 2025;56(1):128-137. doi: 10.1161/strokeaha.124.047910
- Debette S, Beiser A, DeCarli C, et al. Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: The Framingham Offspring Study. Stroke. 2010;41(4):600-606. doi: 10.1161/strokeaha.109.570044
- Derraz I, Abdelrady M, Ahmed R, et al. Impact of white matter hyperintensity burden on outcome in large-vessel occlusion stroke. Radiology. 2022;304(1):145-152. doi: 10.1148/radiol.210419
- Mossa-Basha M, Zhu C. White matter hyperintensities and their relationship to outcomes after stroke intervention. Radiology. 2022;304(1):153-154. doi: 10.1148/radiol.220207
- Hata R, Maeda K, Hermann D, Mies G, Hossmann KA. Evolution of brain infarction after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2000;20(6):937-946. doi: 10.1097/00004647-200006000-00006
- Chamorro Á, Dirnagl U, Urra X, Planas AM. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016;15(8):869-881. doi: 10.1016/s1474-4422(16)00114-9
- Saver JL, Starkman S, Eckstein M, et al. Prehospital use of magnesium sulfate as neuroprotection in acute stroke. N Engl J Med. 2015;372(6):528-536. doi: 10.1056/NEJMoa1408827
- Hill MD, Martin RH, Mikulis D, et al. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): A phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2012;11(11):942-950. doi: 10.1016/s1474-4422(12)70225-9
- Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: Implications for preventive treatments of ischemic stroke and late-onset Alzheimer’s disease. Mol Neurodegener. 2023;18(1):43. doi: 10.1186/s13024-023-00636-1
- Xie D, Zhang P, You S, et al. Salidroside derivative SHPL- 49 attenuates glutamate excitotoxicity in acute ischemic stroke via promoting NR2A-CAMKIIα-Akt/CREB pathway. Phytomedicine. 2024;134:155583. doi: 10.1016/j.phymed.2024.155583
- Ayuso-Dolado S, Esteban-Ortega GM, Vidaurre ÓG, Díaz-Guerra M. A novel cell-penetrating peptide targeting calpain-cleavage of PSD-95 induced by excitotoxicity improves neurological outcome after stroke. Theranostics. 2021;11(14):6746-6765. doi: 10.7150/thno.60701
- Baron JC. Is reperfusion injury a largely intra-ischemic injury? Stroke. 2025;56(3):777-782. doi: 10.1161/strokeaha.124.049541
- Ya J, Pellumbaj J, Hashmat A, Bayraktutan U. The role of stem cells as therapeutics for ischaemic stroke. Cells. 2024;13(2):112. doi: 10.3390/cells13020112
- Li C, Zhao Z, Luo Y, et al. Macrophage-disguised manganese dioxide nanoparticles for neuroprotection by reducing oxidative stress and modulating inflammatory microenvironment in acute ischemic stroke. Adv Sci (Weinh). 2021;8(20):e2101526. doi: 10.1002/advs.202101526
- Li H, Liu P, Zhang B, et al. Acute ischemia induces spatially and transcriptionally distinct microglial subclusters. Genome Med. 2023;15(1):109. doi: 10.1186/s13073-023-01257-5
- Li D, Lang W, Zhou C, et al. Upregulation of microglial ZEB1 ameliorates brain damage after acute ischemic stroke. Cell Rep. 2018;22(13):3574-3586. doi: 10.1016/j.celrep.2018.03.011
- Han B, Jiang W, Liu H, et al. Upregulation of neuronal PGC-1α ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Theranostics. 2020;10(6):2832-2848. doi: 10.7150/thno.37119
- Martinez-Majander N, Gordin D, Joutsi-Korhonen L, et al. Endothelial dysfunction is associated with early-onset cryptogenic ischemic stroke in men and with increasing age. J Am Heart Assoc. 2021;10(14):e020838. doi: 10.1161/jaha.121.020838
- Balistreri CR, Di Giorgi L, Monastero R. Focus of endothelial glycocalyx dysfunction in ischemic stroke and Alzheimer’s disease: Possible intervention strategies. Ageing Res Rev. 2024;99:102362. doi: 10.1016/j.arr.2024.102362
- Shrouder JJ, Calandra GM, Filser S, et al. Continued dysfunction of capillary pericytes promotes no-reflow after experimental stroke in vivo. Brain. 2024;147(3):1057-1074. doi: 10.1093/brain/awad401
- Yokomizo S, Kopp T, Roessing M, et al. Near-infrared II photobiomodulation preconditioning ameliorates stroke injury via phosphorylation of eNOS. Stroke. 2024;55(6):1641-1649. doi: 10.1161/strokeaha.123.045358
- Shuaib A, Butcher K, Mohammad AA, Saqqur M, Liebeskind DS. Collateral blood vessels in acute ischaemic stroke: A potential therapeutic target. Lancet Neurol. 2011;10(10):909-921. doi: 10.1016/s1474-4422(11)70195-8
- Nitzsche A, Poittevin M, Benarab A, et al. Endothelial S1P(1) signaling counteracts infarct expansion in ischemic stroke. Circ Res. 2021;128(3):363-382. doi: 10.1161/circresaha.120.316711
- Mun KT, Hinman JD. Inflammation and the link to vascular brain health: Timing is brain. Stroke. 2022;53(2):427-436. doi: 10.1161/strokeaha.121.032613
- Cai W, Hu M, Li C, et al. FOXP3+ macrophage represses acute ischemic stroke-induced neural inflammation. Autophagy. Apr 2023;19(4):1144-1163. doi: 10.1080/15548627.2022.2116833
- Martirosian RA, Wiedner CD, Sanchez J, et al. Association of incident stroke risk with an IL-18-centered inflammatory network biomarker composite. Stroke. 2024;55(6):1601-1608. doi: 10.1161/strokeaha.123.044719
- Liu Y, Li Y, Zang J, et al. CircOGDH is a penumbra biomarker and therapeutic target in acute ischemic stroke. Circ Res. 2022;130(6):907-924. doi: 10.1161/circresaha.121.319412
- Chen W, Wu Y, Liang Y, et al. Small extracellular vesicles from hypoxia-neuron maintain blood-brain barrier integrity. Stroke. 2025;56(6):1569-1580. doi: 10.1161/strokeaha.124.048446
- McCabe JJ, Walsh C, Gorey S, et al. C-reactive protein, interleukin-6, and vascular recurrence according to stroke subtype: An individual participant data meta-analysis. Neurology. 2024;102(2):e208016. doi: 10.1212/wnl.0000000000208016
- Chen J, Ragab AAY, Doyle MF, et al. Inflammatory protein associations with brain MRI measures: Framingham Offspring Cohort. Alzheimers Dement. 2024;20(11):7465-7478. doi: 10.1002/alz.14147
- Wang Y, Mulder IA, Westendorp WF, Coutinho JM, van de Beek D. Immunothrombosis in acute ischemic stroke. Stroke. 2025;56(2):553-563. doi: 10.1161/strokeaha.124.048137
- Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575-580. doi: 10.1038/s41586-019-1678-1
- Sun M, Zhang Y, Mao R, et al. MeCP2 lactylation protects against ischemic brain injury by transcriptionally regulating neuronal apoptosis. Adv Sci (Weinh). 2025;12(21):e2415309. doi: 10.1002/advs.202415309
- Yang P, Wang S, Zhong C, et al. Association of cardiac biomarkers in combination with cognitive impairment after acute ischemic stroke. J Am Heart Assoc. 2024;13(5):e031010. doi: 10.1161/jaha.123.031010
- Johansen MC, von Rennenberg R, Nolte CH, Jensen M, Bustamante A, Katan M. Role of cardiac biomarkers in stroke and cognitive impairment. Stroke. 2024; 55(9):2376-2384. doi: 10.1161/strokeaha.123.044143