AccScience Publishing / AN / Online First / DOI: 10.36922/an.5812
REVIEW ARTICLE

Effectiveness of non-pharmacological interventions for neurodegenerative disorders: A comprehensive narrative review

Mariam Moselmani1 Aya Kawssan2 Fatima Mortada2 Ahmad Atieh2 Hayat Chahine2 Abdallah Alahmad2 Hiba Hamdar3*
Show Less
1 Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
2 Department of Neuropsychology, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
3 Plovdiv Medical University, Plovdiv, Bulgaria
Advanced Neurology, 5812 https://doi.org/10.36922/an.5812
Submitted: 7 November 2024 | Revised: 10 March 2025 | Accepted: 10 March 2025 | Published: 26 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Age-related neurodegenerative disorders encompass a range of diseases in the central nervous system characterized by neuronal death, disrupted neural connections, altered neurotransmitter secretions, and notable features of proteinopathy. The increasing prevalence of age-related neurodegenerative diseases (NDs) highlights the need for effective therapeutic strategies. This review aims to advocate for non-pharmacological interventions (NPIs), such as adopting healthy lifestyle habits, engaging in physical exercises, ensuring sufficient quality sleep, and maintaining cognitive activity, over pharmacological treatments. A literature search was conducted across PubMed, Scopus, Web of Science, and Google Scholar. Studies were included if they focused on NPIs in ND treatment, were published in peer-reviewed journals, and were written in English. Compared to pharmacological options, many of the NPIs have demonstrated satisfactory clinical outcomes in delaying the progression of neurodegenerative disorders or preventing them in certain cases. Specific dietary patterns, such as the Mediterranean-Dietary Approaches to Stop Hypertension Diet Intervention for Neurodegenerative Delay and Mediterranean diet, have been shown to reduce cognitive impairment while mitigating neuroinflammation and oxidative stress. Regular physical exercise promotes an anti-inflammatory state and enhances the secretion of anti-stress hormones like dopamine, thereby fostering neuroplasticity. In addition, obtaining adequate quality sleep and adhering to a consistent circadian rhythm is crucial for memory consolidation and overall cognitive health. Moreover, stress management techniques, such as meditation and yoga, improve cerebral blood flow and help preserve brain structure. Cognitive training and social engagement further contribute to the delay and attenuation of neurodegeneration, thus maintaining cognitive health. Although NPIs show promise in slowing ND progression, further research is needed to validate their effectiveness.

Keywords
Neurodegeneration
Alzheimer
Pharmacological interventions
Non-pharmacological interventions
Memory consolidation
Cognitive function
Neuroinflammation
Funding
None.
Conflict of interest
The authors declare that there are no conflicts of interest.
References
  1. Feigin VL, Vos T, Nichols E, et al. The global burden of neurological disorders: Translating evidence into policy. Lancet Neurol. 2020;19(3):255-265. doi: 10.1016/S14744422(19)30411-9

 

  1. Erkkinen MG, Kim MO, Geschwind MD. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118. doi: 10.1101/cshperspect.a033118

 

  1. Lamptey RNL, Chaulagain B, Trivedi R, Gothwal A, Layek B, Singh J. A review of the common neurodegenerative disorders: Current therapeutic approaches and the potential role of nanotherapeutics. Int J Mol Sci. 2022;23(3):1851. doi: 10.3390/ijms23031851

 

  1. Alkahtani S, Al-Johani NS, Alarifi S. Mechanistic insights, treatment paradigms, and clinical progress in neurological disorders: Current and future prospects. Int J Mol Sci. 2023;24(2):1340. doi: 10.3390/ijms24021340

 

  1. Mathur S, Gawas C, Ahmad IZ, Wani M, Tabassum H. Neurodegenerative disorders: Assessing the impact of natural vs drug-induced treatment options. Aging Med (Milton). 2023;6(1):82-97. doi: 10.1002/agm2.12243

 

  1. Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57(3):489-495. doi: 10.1212/wnl.57.3.4897.

 

  1. Poewe W. Catechol-O-methyltransferase inhibition with entacapone: Evidence from controlled clinical trials in Parkinson’s disease. Eur J Neurol. 2023;30(Suppl 2):9-14. doi: 10.1111/ene.15993

 

  1. Herholz SC, Herholz RS, Herholz K. Non-pharmacological interventions and neuroplasticity in early stage Alzheimer’s disease. Expert Rev Neurother. 2013;13(11):1235-1245. doi: 10.1586/14737175.2013.845086

 

  1. Luo G, Zhang J, Song Z, et al. Effectiveness of non-pharmacological therapies on cognitive function in patients with dementia-A network meta-analysis of randomized controlled trials. Front Aging Neurosci. 2023;15:1131744. doi: 10.3389/fnagi.2023.1131744

 

  1. Castellano-Tejedor C. Non-pharmacological interventions for the management of chronic health conditions and non-communicable diseases. Int J Environ Res Public Health. 2022;19(14):8536. doi: 10.3390/ijerph19148536

 

  1. Key MN, Szabo-Reed AN. Impact of diet and exercise interventions on cognition and brain health in older adults: A narrative review. Nutrients. 2023;15(11):2495. doi: 10.3390/nu15112495

 

  1. Wen J, Satyanarayanan SK, Li A, et al. Unraveling the impact of Omega-3 polyunsaturated fatty acids on blood-brain barrier (BBB) integrity and glymphatic function. Brain Behav Immun. 2024;115:335-355. doi: 10.1016/j.bbi.2023.10.018

 

  1. Bhuiyan NZ, Hasan MK, Mahmud Z, Hossain MS, Rahman A. Prevention of Alzheimer’s disease through diet: An exploratory review. Metabol Open. 2023;20:100257. doi: 10.1016/j.metop.2023.100257

 

  1. Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh- Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer’s disease: A sound mind in a sound body. EXCLI J. 2017;16:959-972. doi: 10.17179/excli2017-475

 

  1. Umegaki H, Sakurai T, Arai H. Active life for brain health: A narrative review of the mechanism underlying the protective effects of physical activity on the brain. Front Aging Neurosci. 2021;13:761674. doi: 10.3389/fnagi.2021.761674

 

  1. Baldivia B, Andrade VM, Bueno OFA. Contribution of education, occupation and cognitively stimulating activities to the formation of cognitive reserve. Dement Neuropsychol. 2008;2(3):173-182. doi: 10.1590/S1980-57642009DN20300003

 

  1. Krueger KR, Wilson RS, Kamenetsky JM, Barnes LL, Bienias JL, Bennett DA. Social engagement and cognitive function in old age. Exp Aging Res. 2009;35(1):45-60. doi: 10.1080/03610730802545028

 

  1. Shokri-Kojori E, Wang GJ, Wiers CE, et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci U S A. 2018;115(17):4483-4488. doi: 10.1073/pnas.1721694115

 

  1. National Institute of Environmental Health Sciences. Neurodegenerative Diseases. Available from: https:// www.niehs.nih.gov/research/suppor ted/health/ neurodegenerative [Last accessed on 2024 Jul 15].

 

  1. Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: Ten years after. Cell Tissue Res. 2018;373(1):161-173. doi: 10.1007/s00441-018-2814-1

 

  1. Hui J, Zhang N, Kang M, et al. Micronutrient-associated single nucleotide polymorphism and mental health: A mendelian randomization study. Nutrients. 2024;16(13):2042. doi: 10.3390/nu16132042

 

  1. Bayer TA, Wirths O. Intracellular accumulation of amyloid- Beta - a predictor for synaptic dysfunction and neuron loss in Alzheimer’s disease. Front Aging Neurosci. 2010;2:8. doi: 10.3389/fnagi.2010.00008

 

  1. Pickett EK, Herrmann AG, McQueen J, et al. Amyloid beta and tau cooperate to cause reversible behavioral and transcriptional deficits in a model of Alzheimer’s disease. Cell Rep. 2019;29(11):3592-3604.e5. doi: 10.1016/j.celrep.2019.11.044

 

  1. De Paula VJR, Guimarães FM, Diniz BS, Forlenza OV. Neurobiological pathways to Alzheimer’s disease: Amyloid-beta, TAU protein or both? Dement Neuropsychol. 2009;3(3):188-194. doi: 10.1590/S1980-57642009DN30300003

 

  1. Butterfield DA, Griffin S, Munch G, Pasinetti GM. Amyloid beta-peptide and amyloid pathology are central to the oxidative stress and inflammatory cascades under which Alzheimer’s disease brain exists. J Alzheimers Dis. 2002;4(3):193-201. doi: 10.3233/jad- 2002-4309

 

  1. Spires-Jones TL, Hyman BT. The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron. 2014;82(4):756-771. doi: 10.1016/j.neuron.2014.05.004

 

  1. Akhondzadeh S, Noroozian M. Alzheimer’s disease: Pathophysiology and pharmacotherapy. IDrugs. 2002;5(11):1062-1069.

 

  1. Tolosa E, Garrido A, Scholz SW, Poewe W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 2021;20(5):385-397. doi: 10.1016/S1474-4422(21)00030-2

 

  1. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399. doi: 10.1101/cshperspect.a009399

 

  1. Wang GY, Rayner SL, Chung R, Shi BY, Liang XJ. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Mater Today Bio. 2020;6:100055. doi: 10.1016/j.mtbio.2020.100055

 

  1. Morris J. Amyotrophic lateral sclerosis (ALS) and related motor neuron diseases: An overview. Neurodiagn J. 2015;55(3):180-194. doi: 10.1080/21646821.2015.1075181

 

  1. Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic lateral sclerosis. Nat Rev Dis Primers. 2017;3:17085. doi: 10.1038/nrdp.2017.85

 

  1. Wang J, Hu WW, Jiang Z, Feng MJ. Advances in treatment of neurodegenerative diseases: Perspectives for combination of stem cells with neurotrophic factors. World J Stem Cells. 2020;12(5):323-338. doi: 10.4252/wjsc.v12.i5.323

 

  1. Palanisamy CP, Pei J, Alugoju P, et al. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics. 2023;13(12):4138-4165. doi: 10.7150/thno.8306

 

  1. Carvey PM, Hendey B, Monahan AJ. The blood-brain barrier in neurodegenerative disease: A rhetorical perspective. J Neurochem. 2009;111(2):291-314. doi: 10.1111/j.1471-4159.2009.06319.x

 

  1. Berg-Weger M, Stewart DB. Non-pharmacologic interventions for persons with dementia. Mo Med. 2017; 114(2):116-119.

 

  1. Akintola AA, Achterberg WP, Caljouw MAA. Non-pharmacological interventions for improving quality of life of long-term care residents with dementia: A scoping review protocol. BMJ Open. 2019;9(12):e032661. doi: 10.1136/bmjopen-2019-032661

 

  1. Puri S, Shaheen M, Grover B. Nutrition and cognitive health: A life course approach. Front Public Health. 2023;11:1023907. doi: 10.3389/fpubh.2023.1023907

 

  1. Ajibawo-Aganbi U, Saleem S, Khan SZA, et al. Can nutritional adequacy help evade neurodegeneration in older age? A review. Cureus. 2020;12(10):e10921. doi: 10.7759/cureus.10921

 

  1. Chu CQ, Yu LL, Qi GY, et al. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects. Neurosci Biobehav Rev. 2022;135:104556. doi: 10.1016/j.neubiorev.2022.104556

 

  1. Van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de Rest O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean- DASH Intervention for Neurodegenerative Delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease-a review. Adv Nutr. 2019;10(6):1040-1065. doi: 10.1093/advances/nmz054

 

  1. Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement. 2015;11(9):1015-1022. doi: 10.1016/j.jalz.2015.04.011

 

  1. Hosking DE, Eramudugolla R, Cherbuin N, Anstey KJ. MIND not Mediterranean diet related to the 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement. 2019;15(4):581-589. doi: 10.1016/j.jalz.2018.12.011

 

  1. Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015;11(9):1007-1014. doi: 10.1016/j.jalz.2014.11.009

 

  1. Chen C, Hayden KM, Kaufman JD, et al. Adherence to a MIND-like dietary pattern, long-term exposure to fine particulate matter air pollution, and MRI-based measures of brain volume: The women’s health initiative memory study- MRI. Environ Health Perspect. 2021;129(12):127008. doi: 10.1289/EHP8036

 

  1. Freeman LR, Haley-Zitlin V, Rosenberger DS, Granholm AC. Damaging effects of a high-fat diet to the brain and cognition: A review of proposed mechanisms. Nutr Neurosci. 2014;17(6):241-251. doi: 10.1179/1476830513Y.0000000092

 

  1. Hashempour-Baltork F, Farshi P, Mirza Alizadeh A, et al. Effect of refined edible oils on neurodegenerative disorders. Adv Pharm Bull. 2023;13(3):461-468. doi: 10.34172/apb.2023.060

 

  1. Farooqui AA, Farooqui T. Effects of Mediterranean diet components on neurodegenerative diseases. In: Farooqui T, Farooqui AA, editors. Role of the Mediterranean Diet in the Brain and Neurodegenerative Diseases. Ch. 1. United States: Academic Press; 2018. p. 1-16. doi: 10.1016/B978-0-12-811959-4.00001-8

 

  1. Berding K, Carbia C, Cryan JF. Going with the grain: Fiber, cognition, and the microbiota- gut-brain-axis. Exp Biol Med (Maywood). 2021;246(7):796-811. doi: 10.1177/1535370221995785

 

  1. Gammone MA, Riccioni G, Parrinello G, D’Orazio N. Omega-3 polyunsaturated fatty acids: Benefits and endpoints in sport. Nutrients. 2018;11(1):46. doi: 10.3390/nu11010046

 

  1. Pourié G, Martin N, Daval JL, et al. The stimulation of neurogenesis improves the cognitive status of aging rats subjected to gestational and perinatal deficiency of B9-12 vitamins. Int J Mol Sci. 2020;21(21):8008. doi: 10.3390/ijms21218008

 

  1. Dhiman P, Pillai RR, Wilson AB, et al. Cross-sectional association between vitamin B12 status and probable postpartum depression in Indian women. BMC Pregnancy Childbirth. 2021;21(1):146. doi: 10.1186/s12884-021-03622-x

 

  1. Schini-Kerth VB. Homocysteine, a proinflammatory and proatherosclerotic factor: Role of intracellular reactive oxygen species. Circ Res. 2003;93(4):271-273. doi: 10.1161/01.RES.0000089561.87997.CF

 

  1. Zhou J, Wearn A, Huck J, et al. Iron deposition and distribution across the hippocampus is associated with pattern separation and pattern completion in older adults at risk for Alzheimer’s disease. J Neurosci. 2024;44(19):e1973232024. doi: 10.1523/JNEUROSCI.1973-23.2024

 

  1. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273-285. doi: 10.1016/j.cell.2017.09.021

 

  1. Zhou Z, Zhou R, Zhang Z, Li K. The association between vitamin D status, Vitamin D supplementation, sunlight exposure, and Parkinson’s disease: A systematic review and metaanalysis. Med Sci Monit. 2019;25:666-674. doi: 10.12659/MSM.912840

 

  1. Fullard ME, Duda JE. A Review of the relationship between vitamin D and Parkinson disease symptoms. Front Neurol. 2020;11:454. doi: 10.3389/fneur.2020.00454

 

  1. Calvello, R, Cianciulli, A, Nicolardi, G, et al. Vitamin D treatment attenuates neuroinflammation and dopaminergic neurodegeneration in an animal model of Parkinson’s disease, shifting M1 to M2 microglia responses. J Neuroimmune Pharmacol. 2017;12:327-339 doi: 10.1007/s11481-016-9720-7

 

  1. Nissou MF, Guttin A, Zenga C, Berger F, Issartel JP, Wion D. Additional clues for a protective role of vitamin D in neurodegenerative diseases: 1, 25-dihydroxyvitamin D3 triggers an anti-inflammatory response in brain pericytes. J Alzheimers Dis. 2014;42(3):789-799. doi: 10.3233/JAD-140411

 

  1. Ellouze I, Sheffler J, Nagpal R, Arjmandi B. Dietary patterns and Alzheimer’s disease: An updated review linking nutrition to neuroscience. Nutrients. 2023;15(14):3204. doi: 10.3390/nu15143204

 

  1. Joseph J, Cole G, Head E, Ingram D. Nutrition, brain aging, and neurodegeneration. J Neurosci. 2009;29(41):12795-12801. doi: 10.1523/JNEUROSCI.3520-09.2009

 

  1. Santiago JA, Potashkin JA. Physical activity and lifestyle modifications in the treatment of neurodegenerative diseases. Front Aging Neurosci. 2023;15:1185671. doi: 10.3389/fnagi.2023.1185671

 

  1. De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci. 2020;9(5):394-404. doi: 10.1016/j.jshs.2020.01.004

 

  1. Da Silva FC, da Rosa Iop R, de Oliveira LC, et al. Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: A systematic review of randomized controlled trials of the last 10 years. PLoS One. 2018;13(2):e0193113. doi: 10.1371/journal.pone.0193113

 

  1. Liu Y, Yan T, Chu JM, et al. The beneficial effects of physical exercise in the brain and related pathophysiological mechanisms in neurodegenerative diseases. Lab Invest. 2019;99(7):943-957. doi: 10.1038/s41374-019-0232-y

 

  1. Mahalakshmi B, Maurya N, Lee SD, Bharath Kumar V. Possible neuroprotective mechanisms of physical exercise in neurodegeneration. Int J Mol Sci. 2020;21(16):5895. doi: 10.3390/ijms21165895

 

  1. Müllers P, Taubert M, Müller NG. Physical exercise as personalized medicine for dementia prevention? Front Physiol. 2019;10:672. doi: 10.3389/fphys.2019.00672

 

  1. De Sousa Fernandes MS, Ordônio TF, Santos GCJ, et al. Effects of physical exercise on neuroplasticity and brain function: A systematic review in human and animal studies. Neural Plast. 2020;2020:8856621. doi: 10.1155/2020/8856621

 

  1. Meeusen R, De Meirleir K. Exercise and brain neurotransmission. Sports Med. 1995;20(3):160-188. doi: 10.2165/00007256-199520030-00004

 

  1. Lin TW, Kuo YM. Exercise benefits brain function: The monoamine connection. Brain Sci. 2013;3(1):39-53. doi: 10.3390/brainsci3010039

 

  1. National Institute on Aging. Four Types of Exercise Can Improve Your Health and Physical Ability. National Institute on Aging. Available from: https://www.nia.nih.gov/ health/exercise-andphysical-activity/four-types-exercise-can-improve-your-health-and-physical [Last accessed on 2024 Jul 02].

 

  1. Silverman MN, Deuster PA. Biological mechanisms underlying the role of physical fitness in health and resilience. Interface Focus. 2014;4(5):20140040. doi: 10.1098/rsfs.2014.0040

 

  1. McGurran H, Glenn JM, Madero EN, Bott NT. Prevention and treatment of Alzheimer’s disease: Biological mechanisms of exercise. J Alzheimers Dis. 2019;69(2):311-338. doi: 10.3233/JAD-180958

 

  1. Binder DK, Scharfman HE. Brain-derived neurotrophic factor. Growth Factors. 2004;22(3):123-131. doi: 10.1080/08977190410001723308

 

  1. Acheson A, Conover JC, Fandl JP, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature. 1995;374(6521):450-453. doi: 10.1038/374450a0

 

  1. Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci. 2001;24:677-736. doi: 10.1146/annurev.neuro.24.1.677

 

  1. Maisonpierre PC, Le Beau MM, Espinosa R 3rd, et al. Human and rat brain-derived neurotrophic factor and neurotrophin-3: Gene structures, distributions, and chromosomal localizations. Genomics. 1991;10(3):558-568. doi: 10.1016/0888- 7543(91)90436-i

 

  1. Håkansson K, Ledreux A, Daffner K, et al. BDNF responses in healthy older Persons to 35 minutes of physical exercise, cognitive training, and mindfulness: Associations With working memory function. J Alzheimers Dis. 2017;55(2):645-657. doi: 10.3233/JAD- 160593

 

  1. Jiménez-Maldonado A, de Álvarez-Buylla ER, Montero S, et al. Chronic exercise increases plasma brain-derived neurotrophic factor levels, pancreatic islet size, and insulin tolerance in a TrkB-dependent manner. [Published correction appears in PLoS One. 2015;10(3):e0119047. doi: 10.1371/journal.pone.0119047]. PLoS One. 2014;9(12) :e115177. doi: 10.1371/journal.pone.0115177

 

  1. NHLBI, NIH. How Sleep Works - Why Is Sleep Important? NHLBI, NIH; 2022 Available from: https://www.nhlbi.nih. gov/health/sleep/why-sleep-important [Last accessed on 2024 Jul 15].

 

  1. Anghel L, Ciubară A, Nechita A, et al. Sleep disorders associated with neurodegenerative diseases. Diagnostics (Basel). 2023;13(18):2898. doi: 10.3390/diagnostics13182898

 

  1. Fifel K, Videnovic A. Circadian and sleep dysfunctions in neurodegenerative disorders- an update. Front Neurosci. 2021;14:627330. doi: 10.3389/fnins.2020.627330

 

  1. Wang C, Holtzman DM. Bidirectional relationship between sleep and Alzheimer’s disease: Role of amyloid, tau, and other factors. Neuropsychopharmacology. 2020;45(1):104-120. doi: 10.1038/s41386-019-0478-5

 

  1. Bryn Mawr Communications. Sleep & Neurodegenerative Disease. Available from: https://practicalneurology.com/articles/2019-marapr/sleep--neurodegenerative-disease [Last accessed on 2024 Jul 02].

 

  1. Rossman J. Cognitive-Behavioral Therapy for insomnia: An effective and underutilized treatment for insomnia. Am J Lifestyle Med. 2019;13(6):544-547. doi: 10.1177/1559827619867677

 

  1. Bright Light Therapy. Available from: https:// stanfordhealthcare.org/medical-conditions/sleep/ advanced-sleep- phasesyndrome/treatments/bright-light-therapy.html [Last accessed on 2024 Jul 15.

 

  1. Campbell PD, Miller AM, Woesner ME. Bright light therapy: Seasonal affective disorder and beyond. Einstein J Biol Med. 2017;32:E13-E25.

 

  1. Peña-Bautista C, Casas-Fernández E, Vento M, Baquero M, Cháfer-Pericás C. Stress and neurodegeneration. Clin Chim Acta. 2020;503:163-168. doi: 10.1016/j.cca.2020.01.019

 

  1. Sharma H. Meditation: Process and effects. Ayu. 2015;36(3):233-237. doi: 10.4103/0974-8520.182756

 

  1. Li C, Hou Z, Liu Y, Ji Y, Xie L. Cognitive-behavioural therapy in patients with inflammatory bowel diseases: A systematic review and meta-analysis. Int J Nurs Pract. 2019;25(1):e12699. doi: 10.1111/ijn.12699

 

  1. Fernie BA, Kollmann J, Brown RG. Cognitive behavioural interventions for depression in chronic neurological conditions: A systematic review. J Psychosom Res. 2015;78(5):411-419. doi: 10.1016/j.jpsychores.2015.02.012

 

  1. Nourollahimoghadam E, Gorji S, Gorji A, Khaleghi Ghadiri M. Therapeutic role of yoga in neuropsychological disorders. World J Psychiatry. 2021;11(10):754-773. doi: 10.5498/wjp.v11.i10.754

 

  1. Ball K, Berch DB, Helmers KF, et al. Effects of cognitive training interventions with older adults: A randomized controlled trial. JAMA. 2002;288(18):2271-2281. doi: 10.1001/jama.288.18.2271

 

  1. Kattenstroth JC, Kalisch T, Holt S, Tegenthoff M, Dinse HR. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions. Front Aging Neurosci. 2013;5:5. doi: 10.3389/fnagi.2013.00005

 

  1. Bialystok E, Craik FI, Freedman M. Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia. 2007;45(2):459-464. doi: 10.1016/j.neuropsychologia.2006.10.009

 

  1. Hanna-Pladdy B, MacKay A. The relation between instrumental musical activity and cognitive aging. Neuropsychology. 2011;25(3):378-386. doi: 10.1037/a0021895

 

  1. Earhart GM. Dance as therapy for individuals with Parkinson disease. Eur J Phys Rehabil Med. 2009;45(2):231-238.

 

  1. Cotman CW, Berchtold NC. Exercise: A behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 2002;25(6):295-301. doi: 10.1016/s0166- 2236(02)02143-4

 

  1. Boecker H, Sprenger T, Spilker ME, et al. The runner’s high: Opioidergic mechanisms in the human brain. Cereb Cortex. 2008;18(11):2523-2531. doi: 10.1093/cercor/bhn013

 

  1. LeWitt PA. Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Mov Disord. 2015;30(1):64-72. doi: 10.1002/mds.26082

 

  1. Mechelli A, Crinion JT, Noppeney U, et al. Neurolinguistics: Structural plasticity in the bilingual brain. Nature. 2004;431(7010):757. doi: 10.1038/431757a

 

  1. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: A neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22(6):273-280. doi: 10.1016/s0166- 2236(98)01361-7

 

  1. Floresco SB. The nucleus accumbens: An interface between cognition, emotion, and action. Annu Rev Psychol. 2015;66:25-52. doi: 10.1146/annurev-psych-010213- 115159

 

  1. Hu NW, Ondrejcak T, Rowan MJ. Glutamate receptors in preclinical research on Alzheimer’s disease: Update on recent advances. Pharmacol Biochem Behav. 2012;100(4):855-862. doi: 10.1016/j.pbb.2011.04.013

 

  1. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;2006(1):CD005593. doi: 10.1002/14651858.CD005593

 

  1. Thaut MH, Gardiner JC, Holmberg D, et al. Neurologic music therapy improves executive function and emotional adjustment in traumatic brain injury rehabilitation. Ann N Y Acad Sci. 2009;1169:406-416. doi: 10.1111/j.17496632.2009.04585.x

 

  1. Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci. 2014;15(3):17080. doi: 10.1038/nrn3666

 

  1. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci. 2011;14(2):257-262. doi: 10.1038/nn.2726

 

  1. Chanda ML, Levitin DJ. The neurochemistry of music. Trends Cogn Sci. 2013;17(4):179-193. doi: 10.1016/j.tics.2013.02.007

 

  1. Fratiglioni L, Wang HX, Ericsson K, Maytan M, Winblad B. Influence of social network on occurrence of dementia: A community-based longitudinal study. Lancet. 2000;355(9212):1315-1319. doi: 10.1016/S0140-6736(00)02113-9

 

  1. Håkansson K, Rovio S, Helkala EL, et al. Association between mid-life marital status and cognitive function in later life: Population based cohort study. BMJ. 2009;339:b2462. doi: 10.1136/bmj.b2462

 

  1. Uchino BN, Cacioppo JT, Kiecolt-Glaser JK. The relationship between social support and physiological processes: A review with emphasis on underlying mechanisms and implications for health. Psychol Bull. 1996;119(3):488-531. doi: 10.1037/0033- 2909.119.3.488

 

  1. Heinrichs M, Domes G. Neuropeptides and social behaviour: Effects of oxytocin and vasopressin in humans. Prog Brain Res. 2008;170:337-350. doi: 10.1016/S0079-6123(08)00428-7

 

  1. Cacioppo JT, Hawkley LC, Thisted RA. Perceived social isolation makes me sad: 5-year cross-lagged analyses of loneliness and depressive symptomatology in the Chicago Health, Aging, and Social Relations Study. Psychol Aging. 2010;25(2):453-463. doi: 10.1037/a0017216

 

  1. Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 2004;3(6):343-353. doi: 10.1016/S14744422(04)00767-7

 

  1. Seeman TE, Lusignolo TM, Albert M, Berkman L. Social relationships, social support, and patterns of cognitive aging in healthy, high-functioning older adults: MacArthur studies of successful aging. Health Psychol. 2001;20(4):243-255. doi: 10.1037//0278-6133.20.4.243

 

  1. Dunbar RI. The social role of touch in humans and primates: Behavioural function and neurobiological mechanisms. Neurosci Biobehav Rev. 2010;34(2):260-268. doi: 10.1016/j.neubiorev.2008.07.001

 

  1. Steptoe A, Shankar A, Demakakos P, Wardle J. Social isolation, loneliness, and all-cause mortality in older men and women. Proc Natl Acad Sci U S A. 2013;110(15):5797-5801. doi: 10.1073/pnas.1219686110

 

  1. Hsu WY, Ku Y, Zanto TP, Gazzaley A. Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiol Aging. 2015;36(8):2348-2359. doi: 10.1016/j.neurobiolaging.2015.04.016

 

  1. Boggio PS, Valasek CA, Campanhã C, et al. Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer’s disease. Neuropsychol Rehabil. 2011;21(5):703-716. doi: 10.1080/09602011.2011.617943

 

  1. Manenti R, Brambilla M, Petesi M, Ferrari C, Cotelli M. Enhancing verbal episodic memory in older and young subjects after non-invasive brain stimulation. Front Aging Neurosci. 2013;5:49. doi: 10.3389/fnagi.2013.00049

 

  1. Yang T, Liu W, He J, et al. The cognitive effect of non-invasive brain stimulation combined with cognitive training in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Alzheimers Res Ther. 2024;16(1):140. doi: 10.1186/s13195-024-01505-9

 

  1. Lawrence BJ, Gasson N, Johnson AR, Booth L, Loftus AM. Cognitive training and transcranial direct current stimulation for mild cognitive impairment in Parkinson’s disease: A randomized controlled trial. Parkinsons Dis. 2018;2018:4318475. doi: 10.1155/2018/4318475

 

  1. De Roeck EE, De Deyn PP, Dierckx E, Engelborghs S. Brief cognitive screening instruments for early detection of Alzheimer’s disease: A systematic review. Alzheimers Res Ther. 2019;11:21. doi: 10.1186/s13195-019-0474-3

 

  1. Rodakowski J, Saghafi E, Butters MA, Skidmore ER. Non-pharmacological interventions for adults with mild cognitive impairment and early stage dementia: An updated scoping review. Mol Aspects Med. 2015;43-44:38-53. doi: 10.1016/j.mam.2015.06.003

 

  1. Akram AS, Grezenko H, Singh P, et al. Advancing the frontier: Neuroimaging Techniques IN the early detection and management of neurodegenerative diseases. Cureus. 2024;16(5):e61335. doi: 10.7759/cureus.61335

 

  1. Risacher SL, Saykin AJ, West JD, et al. Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res. 2009;6(4):347-361. doi: 10.2174/156720509788929273

 

  1. Hussain S, Mubeen I, Ullah N, et al. Modern diagnostic imaging technique applications and risk factors in the medical field: A review. Biomed Res Int. 2022;2022:5164970. doi: 10.1155/2022/5164970

 

  1. Ossenkoppele R, Schonhaut DR, Schöll M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain. 2016;139(Pt 5):1551-1567. doi: 10.1093/brain/aww027

 

  1. Dupont AC, Largeau B, Guilloteau D, Santiago Ribeiro MJ, Arlicot N. The place of PET to assess new therapeutic effectiveness in neurodegenerative diseases. Contrast Media Mol Imaging. 2018;2018:7043578. doi: 10.1155/2018/7043578

 

  1. Etekochay MO, Amaravadhi AR, González GV, et al. Unveiling new strategies facilitating the implementation of artificial intelligence in neuroimaging for the early detection of Alzheimer’s disease. J Alzheimers Dis. 2024;99(1):1-20. doi: 10.3233/JAD-231135

 

  1. McDade E, Cummings JL, Dhadda S, et al. Lecanemab in patients with early Alzheimer’s disease: Detailed results on biomarker, cognitive, and clinical effects from the randomized and open-label extension of the phase 2 proof-of-concept study. Alzheimers Res Ther. 2022;14(1):191. doi: 10.1186/s13195-022-01124-2

 

  1. Hajj R, Milet A, Toulorge D, et al. Combination of acamprosate and baclofen as a promising therapeutic approach for Parkinson’s disease. Sci Rep. 2015;5(1):16084. doi: 10.1038/srep16084

 

  1. Carbone F, Djamshidian A, Seppi K, Poewe W. Apomorphine for Parkinson’s disease: Efficacy and safety of current and new formulations. CNS Drugs. 2019;33(9):905-918. doi: 10.1007/s40263-019-00661-z

 

  1. Castillo-Torres SA, Lees AJ, Merello M. Intermittent apomorphine use for off period rescue in Parkinson’s disease: A pragmatic review of over three decades of clinical experience. Mov Disord Clin Pract. 2022;10(2):190-208. doi: 10.1002/mdc3.13593

 

  1. Zhang N, Gordon ML. Clinical efficacy and safety of donepezil in the treatment of Alzheimer’s disease in Chinese patients. Clin Interv Aging. 2018;13:1963-1970. doi: 10.2147/cia.s159920

 

  1. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (als)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012;2012:CD001447. doi: 10.1002/14651858.cd001447.pub3

 

  1. Auffret M, Drapier S, Vérin M. The many faces of apomorphine: Lessons from the past and challenges for the future. Drugs R D. 2018;18(2):91-107. doi: 10.1007/s40268018-0230-3

 

  1. Dinkelbach L, Brambilla M, Manenti R, Brem A-K. Non-invasive brain stimulation in Parkinson’s disease: Exploiting crossroads of cognition and mood. Neurosci Biobehav Rev. 2017;75:407-418. doi: 10.1016/j.neubiorev.2017.01.021

 

  1. Guo J, Wang Z, Liu R, Huang Y, Zhang N, Zhang R. Memantine, donepezil, or combination therapy-what is the best therapy for Alzheimer’s disease? A network meta-analysis. Brain Behav. 2020;10(11):e01831. doi: 10.1002/brb3.1831

 

  1. Andrews JA, Jackson CE, Heiman-Patterson TD, Bettica P, Brooks BR, Pioro EP. Real-world evidence of riluzole effectiveness in treating amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2020;21(7-8):509-518. doi: 10.1080/21678421.2020.1771734

 

  1. Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis. 2020;134:104621. doi: 10.1016/j.nbd.2019.104621

 

  1. Ribarič S. Physical exercise, a potential non-pharmacological intervention for attenuating neuroinflammation and cognitive decline in Alzheimer’s disease patients. Int J Mol Sci. 2022;23(6):3245. doi: 10.3390/ijms23063245

 

  1. Mak MK, Wong-Yu IS, Shen X, Chung CL. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol. 2017;13(11):689-703. doi: 10.1038/nrneurol.2017.128

 

  1. Dyńka D, Kowalcze K, Paziewska A. The role of ketogenic diet in the treatment of neurological diseases. Nutrients. 2022;14(23):5003. doi: 10.3390/nu14235003

 

  1. Barichella M, Cereda E, Cassani E, et al. Dietary habits and neurological features of Parkinson’s disease patients: Implications for practice. Clin Nutr. 2017;36(4):1054-1061. doi: 10.1016/j.clnu.2016.06.020

 

  1. Madrid J, Benninger DH. Non-invasive brain stimulation for Parkinson’s disease: Clinical evidence, latest concepts and future goals: A systematic review. J Neurosci Methods. 2021;347:108957. doi: 10.1016/j.jneumeth.2020.108957

 

  1. Da Silva Machado CB, da Silva LM, Gonçalves AF, et al. Multisite non-invasive brain stimulation in Parkinson’s disease: A scoping review. NeuroRehabilitation. 2021;49(4):515-531. doi: 10.3233/nre-210190

 

Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing