AccScience Publishing / AN / Online First / DOI: 10.36922/an.6479
REVIEW ARTICLE

Central role of PPARγ in Alzheimer’s disease: From pathophysiology to potential therapies

Pradeep Kumar Mohanty1 Royal Patel1*
Show Less
1 Department of Pharmacology, School of Pharmacy, LNCT University, Bhopal, Madhya Pradesh, India
Advanced Neurology, 6479 https://doi.org/10.36922/an.6479
Submitted: 21 November 2024 | Revised: 22 December 2024 | Accepted: 11 February 2025 | Published: 11 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Alzheimer’s disease (AD) is a complex neurodegenerative disorder characterized by the deposition of amyloid-beta (Aβ), neurofibrillary tangles, and chronic neuroinflammation, resulting in progressive cognitive decline and neuronal damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays a key role in the regulation of inflammation, glucose homeostasis, lipid metabolism, and mitochondrial function, thus providing a promising therapeutic target for AD management. PPARγ plays a significant role in key pathological processes in AD, including Aβ generation and impaired clearance, tau protein hyperphosphorylation, neuroinflammatory responses, and mitochondrial dysfunction. PPARγ agonists, such as pioglitazone and rosiglitazone, have demonstrated potential benefits in preclinical and clinical studies, such as reducing neuroinflammation, improving mitochondrial biogenesis, modulating insulin signaling, and potentially improving cognitive function. Nevertheless, challenges remain, such as adverse effects, for example, weight gain and limited blood-brain barrier (BBB) permeability of existing agonists. This review discusses the therapeutic potential of PPARγ-mediated strategies for AD, focusing on the development of BBB-penetrable agonists and multimodal therapies aimed at simultaneously addressing multiple pathological aspects. It also highlights the need for comprehensive research to understand the mechanisms by which PPARγ modulates AD pathology. This review on the multifaceted role of PPARγ in AD progression will inspire novel therapeutic approaches with combinatorial strategies and precise modulation of PPARγ activity. Thus, targeting PPARγ may provide some effective treatments for the improvement of disease trajectory in patients with AD.

Keywords
Alzheimer’s disease
PPARγ
Neuroinflammation
Mitochondrial dysfunction
Therapeutic targets
Funding
None.
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Knopman DS, Amieva H, Petersen RC, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7(1):33. doi: 10.1038/s41572-021-00269-y

 

  1. Sachet E, Mertz O, Le Coq JF, et al. Agroecological transitions: A systematic review of research approaches and prospects for participatory action methods. Front Sustain Food Syst. 2021;5:709401. doi: 10.3389/fsufs.2021.709401

 

  1. Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: The good, the bad and the future. Nat Med. 2013;19(5):557-566. doi: 10.1038/nm.3159

 

  1. Muzio G, Barrera G, Pizzimenti S. Peroxisome proliferator-activated receptors (PPARs) and oxidative stress in physiological conditions and in cancer. Antioxidants (Basel). 2021;10(11):1734. doi: 10.3390/antiox10111734

 

  1. Maciejewska-Skrendo A, Massidda M, Tocco F, Leźnicka K. The influence of the differentiation of genes encoding peroxisome proliferator-activated receptors and their coactivators on nutrient and energy metabolism. Nutrients. 2022;14(24):5378. doi: 10.3390/nu14245378

 

  1. Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: Structural insights and therapeutic potential. Front Pharmacol. 2024;15:1464655. doi: 10.3389/fphar.2024.1464655

 

  1. Miyachi H. Structural biology inspired development of a series of human peroxisome proliferator-activated receptor gamma (PPARγ) ligands: From agonist to antagonist. Int J Mol Sci. 2023;24(4):3940. doi: 10.3390/ijms24043940

 

  1. Wen X, Yang Y. Emerging roles of GLIS3 in neonatal diabetes, type 1 and type 2 diabetes. J Mol Endocrinol. 2017;58(2):R73-R85. doi: 10.1530/JME-16-0232

 

  1. Steinke I, Govindarajulu M, Pinky PD, et al. Selective PPAR-Delta/PPAR-gamma activation improves cognition in a model of Alzheimer’s disease. Cells. 2023;12(8):1116. doi: 10.3390/cells12081116

 

  1. Sun J, Liu HY, Zhang YH, Fang ZY, Lv PC. Design, synthesis and bioactivity evaluation of thiazolidinedione derivatives as partial agonists targeting PPARγ. Bioorg Chem. 2021;116:105342. doi: 10.1016/j.bioorg.2021.105342

 

  1. Montaigne D, Butruille L, Staels B. PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol. 2021;18(12):809-823. doi: 10.1038/s41569-021-00569-6

 

  1. Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol. 2023;11:1147434. doi: 10.3389/fcell.2023.1147434

 

  1. D’Orio B, Fracassi A, Ceru MP, Moreno S. Targeting PPARalpha in Alzheimer’s disease. Curr Alzheimer Res. 2018;15(4):345-354. doi: 10.2174/1567205014666170505094549

 

  1. Villapol S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol. 2018;38(1):121-132. doi: 10.1007/s10571-017-0554-5

 

  1. Li J, Chen S, Wang F, et al. Effect of rosiglitazone, the peroxisome proliferator-activated receptor (PPAR)-γ agonist, on apoptosis, inflammatory cytokines and oxidative stress in pentylenetetrazole-induced seizures in kindled mice. Neurochem Res. 2023;48(9):2870-2880. doi: 10.1007/s11064-023-03951-7

 

  1. Basilotta R, Lanza M, Casili G, et al. Potential therapeutic effects of ppar ligands in glioblastoma. Cells. 2022;11(4):621. doi: 10.3390/cells11040621

 

  1. Baghcheghi Y, Razazpour F, Seyedi F, Arefinia N, Hedayati- Moghadam M. Exploring the molecular mechanisms of PPARγ agonists in modulating memory impairment in neurodegenerative disorders. Mol Biol Rep. 2024;51(1):945. doi: 10.1007/s11033-024-09850-6

 

  1. Layrolle P, Payoux P, Chavanas S. PPAR gamma and viral infections of the brain. Int J Mol Sci. 2021;22(16):8876. doi: 10.3390/ijms22168876

 

  1. Di Giacomo E, Benedetti E, Cristiano L, et al. Roles of PPAR transcription factors in the energetic metabolic switch occurring during adult neurogenesis. Cell Cycle. 2017;16(1):59-72. doi: 10.1080/15384101.2016.1252881

 

  1. Cataldi S, Costa V, Ciccodicola A, Aprile M. PPARγ and diabetes: Beyond the genome and towards personalized medicine. Curr Diabetes Rep. 2021;21:1-5. doi: 10.1007/s11892-021-01385-5

 

  1. Qiu YY, Zhang J, Zeng FY, Zhu YZ. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol Res. 2023;192:106786. doi: 10.1016/j.phrs.2023.106786

 

  1. Yamazaki Y, Painter MM, Bu G, Kanekiyo T. Apolipoprotein E as a therapeutic target in Alzheimer’s disease: A review of basic research and clinical evidence. CNS Drugs. 2016;30(9):773-789. doi: 10.1007/s40263-016-0361-4

 

  1. Zhong H, Geng R, Zhang Y, et al. Effects of peroxisome proliferator-activated receptor-gamma agonists on cognitive function: A systematic review and meta-analysis. Biomedicines. 2023;11(2):246. doi: 10.3390/biomedicines11020246

 

  1. Landreth G, Jiang Q, Mandrekar S, Heneka M. PPARγ agonists as therapeutics for the treatment of Alzheimer’s disease. Neurotherapeutics. 2008;5(3):481-489. doi: 10.1016/j.nurt.2008.05.003

 

  1. Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236-240. doi: 10.4103/2231-4040.90879

 

  1. Hu W, Jiang C, Kim M, et al. Isoform-specific functions of PPARγ in gene regulation and metabolism. Genes Dev. 2022;36(5-6):300-312. doi: 10.1101/gad.349232.121

 

  1. Jiang Q, Heneka M, Landreth GE. The role of peroxisome proliferator-activated receptor-γ PPARγ) in Alzheimer’s disease: Therapeutic implications. CNS Drugs. 2008;22:1-4. doi: 10.2165/00023210-200822010-00001

 

  1. Nicolakakis N, Hamel E. The nuclear receptor PPARγ as a therapeutic target for cerebrovascular and brain dysfunction in Alzheimer’s disease. Front Aging Neurosci. 2010;2:1389. doi: 10.3389/fnagi.2010.00021

 

  1. Barucker C, Bittner HJ, Chang PK, et al. Aβ42-oligomer Interacting Peptide (AIP) neutralizes toxic amyloid-β42 species and protects synaptic structure and function. Sci Rep. 2015;5(1):15410. doi: 10.1038/srep15410

 

  1. Alhowail A, Alsikhan R, Alsaud M, Aldubayan M, Rabbani SI. Protective effects of pioglitazone on cognitive impairment and the underlying mechanisms: A review of literature. Drug Des Dev Ther. 2022;16:2919-2931. doi: 10.2147/DDDT.S367229

 

  1. Landreth G. Therapeutic use of agonists of the nuclear receptor PPARγ in Alzheimer’s disease. Curr Alzheimer Res. 2007;4(2):159-164. doi: 10.2174/156720507780362092

 

  1. Mandrekar-Colucci S, Karlo JC, Landreth GE. Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease. J Neurosci. 2012;32(30):10117-10128. doi: 10.1523/JNEUROSCI.5268-11.2012

 

  1. Quan Q, Li X, Feng J, Hou J, Li M, Zhang B. Ginsenoside Rg1 reduces β-amyloid levels by inhibiting CDΚ5-induced PPARγ phosphorylation in a neuron model of Alzheimer’s disease. Mol Med Rep. 2020;22(4):3277-3288. doi: 10.3892/mmr.2020.11424

 

  1. Moosecker S, Gomes P, Dioli C, Yu S, Sotiropoulos I, Almeida OF. Activated PPARγ abrogates misprocessing of amyloid precursor protein, tau missorting and synaptotoxicity. Front Cell Neurosci. 2019;13:239. doi: 10.3389/fncel.2019.00239

 

  1. Kimura T, Ishiguro K, Hisanaga SI. Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci. 2014;7:65. doi: 10.3389/fnmol.2014.00065

 

  1. Priya D, Hani U, Haider N, et al. Novel PPAR-γ agonists as potential neuroprotective agents against Alzheimer’s disease: Rational design, synthesis, in silico evaluation, PPAR-γ binding assay and transactivation and expression studies. RSC Adv. 2024;14(45):33247-33266. doi: 10.1039/D4RA06330A

 

  1. Durai P, Beeraka NM, Ramachandrappa HV, et al. Advances in PPARs molecular dynamics and glitazones as a repurposing therapeutic strategy through mitochondrial redox dynamics against neurodegeneration. Curr Neuropharmacol. 2022;20(5):893-915. doi: 10.2174/1570159X19666211109141330

 

  1. Duan M, Gao P, Chen SX, Novák P, Yin K, Zhu X. Sphingosine‐1‐phosphate in mitochondrial function and metabolic diseases. Obes Rev. 2022;23(6):e13426. doi: 10.1111/obr.13426

 

  1. Halling JF, Pilegaard H. PGC-1α-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab. 2020;45(9):927-936. doi: 10.1139/apnm-2020-0005

 

  1. Jamwal S, Blackburn JK, Elsworth JD. PPARγ/PGC1α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. Pharmacol Ther. 2021;219:107705. doi: 10.1016/j.pharmthera.2020.107705

 

  1. Wójtowicz S, Strosznajder AK, Jeżyna M, Strosznajder JB. The novel role of PPAR alpha in the brain: Promising target in therapy of Alzheimer’s disease and other neurodegenerative disorders. Neurochem Res. 2020;45(5):972-988. doi: 10.1007/s11064-020-02993-5

 

  1. Fransen M, Lismont C, Walton P. The peroxisome-mitochondria connection: How and why? Int J Mol Sci. 2017;18(6):1126. doi: 10.3390/ijms18061126

 

  1. Kumar BP, Kumar AP, Jose JA, et al. Minutes of PPAR-γ agonism and neuroprotection. Neurochem Int. 2020;140:104814. doi: 10.1016/j.neuint.2020.104814

 

  1. Qiu H, Liu X. Echinacoside improves cognitive impairment by inhibiting Aβ deposition through the PI3K/AKT/Nrf2/ PPARγ signaling pathways in APP/PS1 mice. Mol Neurobiol. 2022;59(8):4987-4999. doi: 10.1007/s12035-022-02885-5

 

  1. Liu C, Tate T, Batourina E, et al. Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells. Nat Commun. 2019;10(1):4589. doi: 10.1038/s41467-019-12332-0

 

  1. Tschape JA, Hartmann T. Therapeutic perspectives in Alzheimer’s disease. Recent Patents CNS Drug Discov (Discontinued). 2006;1(1):119-27. doi: 10.2174/157488906775245354

 

  1. Żulińska S, Strosznajder AK, Strosznajder JB. Current view on PPAR-α and its relation to neurosteroids in Alzheimer’s disease and other neuropsychiatric disorders: Promising targets in a therapeutic strategy. Int J Mol Sci. 2024;25(13):7106. doi: 10.3390/ijms25137106

 

  1. Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol. 2023;14:1130689. doi: 10.3389/fendo.2023.1130689

 

  1. Malm T, Mariani M, Donovan LJ, Neilson L, Landreth GE. Activation of the nuclear receptor PPARδ is neuroprotective in a transgenic mouse model of Alzheimer’s disease through inhibition of inflammation. J Neuroinflamm. 2015;12:1-5. doi: 10.1186/s12974-014-0229-9

 

  1. Khan MA, Alam Q, Haque A, et al. Current progress on peroxisome proliferator-activated receptor gamma agonist as an emerging therapeutic approach for the treatment of Alzheimer’s disease: An update. Curr Neuropharmacol. 2019;17(3):232-246. doi: 10.2174/1570159X16666180828100002

 

  1. Carneiro A, Sinoti SB, de Freitas MM, et al. Hydroethanolic extract of Morus nigra L. Leaves: A dual PPAR-α/γ agonist with anti-inflammatory properties in lipopolysaccharide-stimulated raw 264.7. Plants. 2022;11:3147. doi: 10.3390/plants11223147

 

  1. Sundararajan S, Jiang Q, Heneka M, Landreth G. PPARγ as a therapeutic target in central nervous system diseases. Neurochem Int. 2006;49(2):136-144. doi: 10.1016/j.neuint.2006.03.020

 

  1. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000;405(6785):421-424. doi: 10.1038/35013000

 

  1. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer’s disease: Inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci. 2000;20(2):558-567. doi: 10.1523/JNEUROSCI.20-02-00558.2000

 

  1. Bocher V, Pineda‐Torra IN, Fruchart JC, Staels B. PPARs: Transcription factors controlling lipid and lipoprotein metabolism. Ann N Y Acad Sci. 2002;967(1):7-18. doi: 10.1111/j.1749-6632.2002.tb04258.x

 

  1. Cabrero A, Laguna JC, Vazquez M. Peroxisome proliferator-activated receptors and the control of inflammation. Curr Drug Targ Inflamm Allergy. 2002;1(3):243-248. doi: 10.2174/1568010023344616

 

  1. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med. 2002;53(1):409-435. doi: 10.1146/annurev.med.53.082901.104018

 

  1. Zhang F, Lavan BE, Gregoire FM. Selective modulators of PPAR‐γ activity: Molecular aspects related to obesity and side‐effects. PPAR Res. 2007;2007(1):032696. doi: 10.1155/2007/32696

 

  1. Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-γ. Nature. 2005;437(7059):759-763. doi: 10.1038/nature03988

 

  1. Picard F, Auwerx J. PPARγ and glucose homeostasis. Annu Rev Nutr. 2002;22(1):167-197. doi: 10.1146/annurev.nutr.22.010402.102808

 

  1. Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol. 2006;199(2):265-273. doi: 10.1016/j.expneurol.2006.01.018

 

  1. Pizcueta P, Vergara C, Emanuele M, Vilalta A, Rodríguez- Pascau L, Martinell M. Development of PPARγ agonists for the treatment of neuroinflammatory and neurodegenerative diseases: Leriglitazone as a promising candidate. Int J Mol Sci. 2023;24(4):3201. doi: 10.3390/ijms24043201

 

  1. Kotha S, Kulkarni VM. An in-silico approach: Identification of PPAR-γ agonists from seaweeds for the management of Alzheimer’s disease. J Biomol Struct Dyn. 2021;39(6):2210-2229. doi: 10.1080/07391102.2020.1747543

 

  1. Steinke I, Singh M, Amin R. Dual PPAR delta/gamma agonists offer therapeutic potential for Alzheimer’s disease. Neural Regen Res. 2024;19(6):1175-1176. doi: 10.4103/1673-5374.386410

 

  1. Kaundal RK, Sharma SS. Peroxisome proliferator-activated receptor gamma agonists as neuroprotective agents. Drug News Perspect. 2010;23(4):241-256. doi: 10.1358/dnp.2010.23.4.1437710

 

  1. Pedersen WA, Flynn ER. Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis. 2004;17(3):500-506. doi: 10.1016/j.nbd.2004.08.003

 

  1. Kalra J, Khan A. Reducing Aβ load and tau phosphorylation: Emerging perspective for treating Alzheimer’s disease. Eur J Pharmacol. 2015;764:571-581. doi: 10.1016/j.ejphar.2015.07.043

 

  1. Kumar M, Sharma AA, Datusalia AK, Khatik GL. PPARs (peroxisome proliferator-activated receptors) and their agonists in Alzheimer’s disease. Med Chem. 2024;20(8):781-798. doi: 10.2174/0115734064295063240422100615

 

  1. Yang JJ. Brain insulin resistance and the therapeutic value of insulin and insulin-sensitizing drugs in Alzheimer’s disease neuropathology. Acta Neurol Belg. 2022;122(5):1135-1142. doi: 10.1007/s13760-022-01907-2

 

  1. Hampel H, Lista S, Neri C, Vergallo A. Time for the systems-level integration of aging: Resilience enhancing strategies to prevent Alzheimer’s disease. Prog Neurobiol. 2019;181:101662. doi: 10.1016/j.pneurobio.2019.101662

 

  1. Plascencia-Villa G, Perry G. Status and future directions of clinical trials in Alzheimer’s disease. Int Rev Neurobiol. 2020;154:3-50. doi: 10.1016/bs.irn.2020.03.022

 

  1. Rayner ML, Healy J, Phillips JB. Repurposing small molecules to target PPAR-γ as new therapies for peripheral nerve injuries. Biomolecules. 2021;11(9):1301. doi: 10.3390/biom11091301

 

  1. Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and peripheral metabolic defects contribute to the pathogenesis of Alzheimer’s disease: Targeting mitochondria for diagnosis and prevention. Antioxid Redox Signal. 2020;32(16):1188-1236. doi: 10.1089/ars.2019.7763

 

  1. Feinstein DL. Therapeutic potential of peroxisome proliferator-activated receptor agonists for neurological disease. Diabetes Technol Ther. 2003;5(1):67-73. doi: 10.1089/152091503763816481

 

  1. Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res. 2016;111:76-85. doi: 10.1016/j.phrs.2016.02.028

 

  1. Miao J, Ma H, Yang Y, et al. Microglia in Alzheimer’s disease: Pathogenesis, mechanisms, and therapeutic potentials. Front Aging Neurosci. 2023;15:1201982. doi: 10.3389/fnagi.2023.1201982

 

  1. Lista S, Dubois B, Hampel H. Paths to Alzheimer’s disease prevention: from modifiable risk factors to biomarker enrichment strategies. J Nutr Health Aging. 2015;19(2):154-163. doi: 10.1007/s12603-014-0515-3

 

Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing