AccScience Publishing / AN / Online First / DOI: 10.36922/an.5070
CASE REPORT

Guillain–Barré syndrome with positive anti-sulfatide antibodies (Paraplegia with bilateral facial nerve palsy): A case report and retrospective analysis

Yifeng Zhang1 Xiaolu Wang1 Bin Wang1 Yaozhen Wang1 Xiaomei Cui1* Yanqiang Wang1*
Show Less
1 Department of Neurology II, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, China
Advanced Neurology, 5070 https://doi.org/10.36922/an.5070
Submitted: 7 October 2024 | Revised: 10 December 2024 | Accepted: 14 February 2025 | Published: 4 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Guillain–Barré syndrome (GBS) is an autoimmune inflammatory neuropathy frequently triggered by infections such as the Epstein–Barr virus and influenza B virus. While cranial nerve involvement occurs in nearly half of the cases, atypical presentations, including paraplegia with bilateral facial nerve palsy, are extremely rare. Herein, we report a 42-year-old female presenting with progressive lumbosacral pain, paraplegia, and bilateral facial nerve palsy. Diagnostic findings included demyelinating changes on electromyography, protein-cell separation in cerebrospinal fluid, and elevated anti-sulfatide immunoglobulin (Ig)G antibodies, confirming acute inflammatory demyelinating polyneuropathy. Treatment with intravenous Ig and adjunct therapies resulted in significant recovery and improved quality of life. This case emphasizes the diagnostic role of anti-sulfatide antibody testing in atypical GBS and highlights the potential of sulfatide-targeted therapies as novel interventions.

Keywords
Guillain–Barré syndrome
Anti-ganglioside antibodies
Case report
Paraplegia
Nerve palsy
Funding
This work was supported by Shandong Provincial Science and Technology Development Plan Project (202303071478), Clinical Research Center of Affiliated Hospital of Weifang Medical University (2022WYFYLCYJ02), Affiliated Hospital of Weifang Medical University Horizontal Project (WYFYKY-HX202307, WYFYKY-HX202201), Weifang Key Laboratory and Yuandu Scholar Team Support.
Conflict of interest
The authors declare no competing interests.
References
  1. Willison HJ, Jacobs BC, van Doorn PA. Guillain-Barré syndrome. Lancet. 2016;388(10045):717-727. doi: 10.1016/s0140-6736(16)00339-1

 

  1. Hayashi A, Kaneko N, Tomihira C, Baba H. Sulfatide decrease in myelin influences formation of the paranodal axo-glial junction and conduction velocity in the sciatic nerve. Glia. 2013;61(4):466-474. doi: 10.1002/glia.22447

 

  1. Palavicini JP, Wang C, Chen L, et al. Novel molecular insights into the critical role of sulfatide in myelin maintenance/ function. J Neurochem. 2016;139(1):40-54. doi: 10.1111/jnc.13738

 

  1. van den Berg B, Walgaard C, Drenthen J, Fokke C, Jacobs BC, van Doorn PA. Guillain-Barré syndrome: Pathogenesis, diagnosis, treatment and prognosis. Nat Rev Neurol. 2014;10(8):469-482. doi: 10.1038/nrneurol.2014.121

 

  1. Doets AY, Verboon C, van den Berg B, et al. Regional variation of Guillain-Barré syndrome. Brain. 2018;141(10):2866-2877. doi: 10.1093/brain/awy232

 

  1. Goenka A, Michael BD, Ledger E, et al. Neurological manifestations of influenza infection in children and adults: Results of a National British Surveillance Study. Clin Infect Dis. 2014;58(6):775-784. doi: 10.1093/cid/cit922

 

  1. Caudie C, Quittard Pinon A, Taravel D, et al. Preceding infections and anti-ganglioside antibody profiles assessed by a dot immunoassay in 306 French Guillain-Barré syndrome patients. J Neurol. 2011;258(11):1958-1964. doi: 10.1007/s00415-011-6042-9

 

  1. Shahrizaila N, Lehmann HC, Kuwabara S. Guillain-Barré syndrome. Lancet. 2021;397(10280):1214-1228. doi: 10.1016/s0140-6736(21)00517-1

 

  1. van den Berg B, Fokke C, Drenthen J, van Doorn PA, Jacobs BC. Paraparetic Guillain-Barré syndrome. Neurology. 2014;82(22):1984-1999. doi: 10.1212/wnl.0000000000000481

 

  1. Wakerley BR, Kokubun N, Funakoshi K, Nagashima T, Hirata K, Yuki N. Clinical classification of 103 Japanese patients with Guillain-Barré syndrome. J Neurol Sci. 2016;369:43-47. doi: 10.1016/j.jns.2016.08.002

 

  1. Kim JE, Min YG, Shin JY, et al. Guillain-Barré syndrome and variants following COVID-19 vaccination: Report of 13 cases. Front Neurol. 2021;12:820723. doi: 10.3389/fneur.2021.820723

 

  1. Scheidl E, Canseco DD, Hadji-Naumov A, Bereznai B. Guillain-Barré syndrome during SARS-CoV-2 pandemic: A case report and review of recent literature. J Peripher Nerv Syst. 2020;25(2):204-207. doi: 10.1111/jns.12382

 

  1. Vishnuram S, Abathsagayam K, Suganthirababu P. Physiotherapy management of a rare variant of Guillain- Barré syndrome, acute motor and sensory axonal neuropathy (AMSAN) along with COVID-19 in a 35-year-old male -a case report. Afr Health Sci. 2022;22(3):520-526. doi: 10.4314/ahs.v22i3.56

 

  1. Mori M, Takagi K, Kuwabara S, Hattori T, Kojima S. Guillain-Barré syndrome following hand-foot-and-mouth disease. Intern Med. 2000;39(6):503-505. doi: 10.2169/internalmedicine.39.503

 

  1. Bigaut K, Mallaret M, Baloglu S, et al. Guillain-Barré syndrome related to SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e785. doi: 10.1212/nxi.0000000000000785

 

  1. Börü ÜT, Bölük C, Toksoy CK, Demirbaş H. Acute cerebellitis, transverse myelitis and polyradiculoneuritis related to post-COVID-19 infection. J Spinal Cord Med. 2022;45(5):765-768. doi: 10.1080/10790268.2021.1969502

 

  1. Kimachi T, Yuki N, Kokubun N, Yamaguchi S, Wakerley BR. Paraparetic Guillain-Barré syndrome: Nondemyelinating reversible conduction failure restricted to the lower limbs. Muscle Nerve. 2017;55(2):281-285. doi: 10.1002/mus.25242

 

  1. Díez-Tejedor E, Gutiérrez-Rivas E, Gil-Peralta A. Gangliosides and Guillain-Barré syndrome: The Spanish data. Neuroepidemiology. 1993;12(5):251-256. doi: 10.1159/000110325

 

  1. Yuki N. Anti-ganglioside antibody and neuropathy: Review of our research. J Peripher Nerv Syst. 1998;3(1):3-18.

 

  1. Dustin E, McQuiston AR, Honke K, Palavicini JP, Han X, Dupree JL. Adult-onset depletion of sulfatide leads to axonal degeneration with relative myelin sparing. Glia. 2023;71(9):2285-2303. doi: 10.1002/glia.24423

 

  1. Pestronk A, Li F, Griffin J, et al. Polyneuropathy syndromes associated with serum antibodies to sulfatide and myelin-associated glycoprotein. Neurology. 1991;41(3):357-362. doi: 10.1212/wnl.41.3.357

 

  1. Teo JD, Marian OC, Spiteri AG, et al. Early microglial response, myelin deterioration and lethality in mice deficient for very long chain ceramide synthesis in oligodendrocytes. Glia. 2023;71(4):1120-1141. doi: 10.1002/glia.24329

 

  1. Dustin E, Suarez-Pozos E, Stotesberry C, et al. Compromised myelin and axonal molecular organization following adult-onset sulfatide depletion. Biomedicines. 2023;11(5):1431. doi: 10.3390/biomedicines11051431

 

  1. Zhao M, Gu Y, Zhao J, Li N. AntiGQ1b antibody positive with MFS/GBS overlapped syndrome with diplopia and hemiplegia onset: Case report and retrospective analysis. Medicine (Baltimore). 2022;101(37):e30584. doi: 10.1097/md.0000000000030584

 

  1. Liu H, Lv HG, Zhang R. Variant of Guillain-Barré syndrome with anti-sulfatide antibody positivity and spinal cord involvement: A case report. World J Clin Cases. 2023;11(26):6274-6279. doi: 10.12998/wjcc.v11.i26.6274

 

  1. Luan H, Zhang P, Zhen M, Li M, Wang X, Xu J. Recurrent Guillain-Barré syndrome presenting as pharyngeal-cervical-brachial variant with three species of ganglioside antibodies: Case report. BMC Neurol. 2022;22(1):441. doi: 10.1186/s12883-022-02955-0

 

  1. Souayah N, Mian NF, Gu Y, Ilyas AA. Elevated anti-sulfatide antibodies in Guillain-Barré syndrome in T cell depleted at end-stage AIDS. J Neuroimmunol. 2007;188(1- 2):143-145. doi: 10.1016/j.jneuroim.2007.05.020

 

  1. Qiu S, Palavicini JP, Wang J, et al. Adult-onset CNS myelin sulfatide deficiency is sufficient to cause Alzheimer’s disease-like neuroinflammation and cognitive impairment. Mol Neurodegener. 2021;16(1):64. doi: 10.1186/s13024-021-00488-7

 

  1. Zimmer VC, Lauer AA, Haupenthal V, et al. A bidirectional link between sulfatide and Alzheimer’s disease. Cell Chem Biol. 2024;31(2):265-283.e7. doi: 10.1016/j.chembiol.2023.10.021

 

  1. Hamatani M, Kondo T. Immunological role of sulfatide in the pathogenesis of multiple sclerosis. Neural Regen Res. 2023;18(9):1950-1951. doi: 10.4103/1673-5374.366498

 

  1. Si X, Li Y, Jiang Y, et al. γ-Aminobutyric acid attenuates high-fat diet-induced cerebral oxidative impairment via enhanced synthesis of hippocampal sulfatides. J Agric Food Chem. 2019;67(4):1081-1091. doi: 10.1021/acs.jafc.8b05246

 

  1. Zhang YH, Vasko MR, Nicol GD. Ceramide, a putative second messenger for nerve growth factor, modulates the TTX-resistant Na(+) current and delayed rectifier K(+) current in rat sensory neurons. J Physiol. 2002;544(2):385-402. doi: 10.1113/jphysiol.2002.024265
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing