AccScience Publishing / AN / Online First / DOI: 10.36922/an.4841
PERSPECTIVE ARTICLE

Incidental covert cerebral small vessel disease: Detection and management

Alina González-Quevedo1†* Tania Arrieta Hernández2† Marisol Peña Sánchez1 Zenaida Hernández Díaz3 Marianela Arteche-Prior2 Javier Sánchez López2
Show Less
1 Department of Neurobiology, Institute of Neurology and Neurosurgery, Havana, La Habana Province, Cuba
2 Department of Neurology, Institute of Neurology and Neurosurgery, Havana, La Habana Province, Cuba
3 Department of Neuroimaginology, International Center of Neurological Restoration, Havana, La Habana Province, Cuba
Advanced Neurology, 4841 https://doi.org/10.36922/an.4841
Submitted: 13 September 2024 | Revised: 20 November 2024 | Accepted: 26 December 2024 | Published: 16 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Cerebral small vessel disease (CSVD) is one of the most common vascular diseases of the brain, primarily diagnosed using magnetic resonance imaging biomarkers. Advanced brain imaging techniques have enabled the detection of asymptomatic or covert CSVD in individuals without neurological symptoms. CSVD is highly prevalent among the elderly and healthy community-dwelling adults with vascular risk factors. It increases the risk of stroke, cognitive decline, and vascular dementia, and exacerbates the severity of Alzheimer’s disease. Covert CSVD is generally considered incidental, leading to a lack of intervention, especially among non-neurological physicians. The relevance of CSVD in asymptomatic healthy populations remains a contentious issue. Despite identifying covert CSVD, management strategies are poorly established, posing challenges for neurologists and primary care physicians. Key debated issues are: (i) the advantages of screening asymptomatic individuals concerning reduced adverse health events or cost-effectiveness, (ii) effective community screening strategies, including the development of non-imaging biomarkers, and (iii) the clinical and therapeutic implications of covert CSVD. Currently, limited scientific evidence addresses these issues, necessitating more high-quality longitudinal studies. Increased awareness regarding the importance of detecting, treating, and systematically monitoring covert CVDS is essential. Screening procedures should be more active, utilizing more accessible non-imaging biomarkers such as blood tests, retinal assessments, and ambulatory blood pressure monitoring. The early detection of CSVD presents an opportunity to implement more effective preventive strategies.

Keywords
Cerebral small vessel disease
Cerebrovascular diseases
Brain magnetic resonance imaging
Biomarkers
Lacunar infarct
White matter hyperintensities
Stroke
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Meinel TR, Wardlaw JM, Kent DM. Is incidentally discovered covert cerebrovascular disease ignorable? JAMA Neurol. 2024;81(5):437-438. doi: 10.1001/jamaneurol.2023.5456

 

  1. Gao Y, Li D, Lin J, et al. Cerebral small vessel disease: Pathological mechanisms and potential therapeutic targets. Front Aging Neurosci. 2022;14:961661. doi: 10.3389/fnagi.2022.961661

 

  1. Lam BYK, Cai Y, Akinyemi R, et al. The global burden of cerebral small vessel disease in low- and middle-income countries: A systematic review and meta-analysis. Int J Stroke. 2023;18:15-27. doi: 10.1177/17474930221137019

 

  1. González-Quevedo A, González-García S, Peña-Sánchez M, Menéndez-Sainz C, Fernández-Carriera R, Codero Eiriz A. Blood-based biomarkers could help identify subclinical brain damage caused by arterial hypertension. MEDICC Rev. 2016;18(1-2):46-53. doi: 10.37757/MR2016.V18.N1-2.9

 

  1. Hannawi Y, Vaishnav A, Coskun EP, Gangadhara S, Romero JR. Covert cerebral small vessel disease: Ready for clinical prime time. J Am Heart Assoc. 2023;12(24):e029891. doi: 10.1161/JAHA.123.029891

 

  1. Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS. Clinical significance of magnetic resonance imaging markers of vascular brain injury: A systematic review and meta-analysis. JAMA Neurol. 2019;76(1):81-94. doi: 10.1001/jamaneurol.2018.3122

 

  1. Das AS, Regenhardt RW, Vernooij MW, Blacker D, Charidimou A, Viswanathan A. Asymptomatic cerebral small vessel disease: Insights from population-based studies. J Stroke. 2019;21(2):121-138. doi: 10.5853/jos.2018.03608

 

  1. Wang Z, Chen Q, Chen J, Yang N, Zheng K. Risk factors of cerebral small vessel disease: A systematic review and meta-analysis. Medicine (Baltimore). 2021;100(51):e28229. doi: 10.1097/MD.0000000000028229

 

  1. Yi F, Jacob MA, Verhoeven JI, et al. Baseline and longitudinal MRI markers associated with 16-year mortality in patients with cerebral small vessel disease. Neurology. 2024;103:e209701. doi: 10.1212/WNL.0000000000209701

 

  1. Abraham H, Wolfson L, Moscufo N, Guttmann CR, Kaplan RF, White WB. Cardiovascular risk factors and small vessel disease of the brain: Blood pressure, white matter lesions, and functional decline in older persons. J Cereb Blood Flow Metab. 2016;36(1):132-142. doi: 10.1038/jcbfm.2015.121

 

  1. Zhou Z, You S, Sakamoto Y, et al. Covert cerebrovascular changes in people with heart disease: A systematic review and meta-analysis. Neurology. 2024;102(8):e209204. doi: 10.1212/WNL.0000000000209204

 

  1. Wardlaw JM, Debette S, Jokinen H, et al. ESO Guideline on covert cerebral small vessel disease. Eur Stroke J. 2021;6(2):CXI-CLXII. doi: 10.1177/23969873211012132

 

  1. Smith EE, Saposnik G, Biessels GJ, et al. Prevention of stroke in patients with silent cerebrovascular disease: A scientific statement for health care professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48(2):e44-e71. doi: 10.1161/STR.0000000000000116

 

  1. Tully P, Yano Y, Launer L, et al. Association between blood pressure variability and cerebral small-vessel disease: A systematic review and meta-analysis. J Am Heart Assoc. 2020;9:e013841. doi: 10.1161/JAHA.119.013841

 

  1. Wu LY, Chai YL, Cheah IK, et al. Blood-based biomarkers of cerebral small vessel disease. Ageing Res Rev. 2024;95:102247. doi: 10.1016/j.arr.2024.102247

 

  1. Hernández-González G, Bringas-Vega M, Galán-García L, et al. Multimodal quantitative neuroimaging databases and methods: The cuban brain mapping project. Clin EEG Neurosci. 2011;42(3):149-159. doi: 10.1177/155005941104200303

 

  1. Huang Y, Wang S, Cai C, et al. Retinal vascular density as a potential biomarker of diabetic cerebral small vessel disease. Diabetes Obes Metab. 2024;26(5):1789-1798. doi: 10.1111/dom.15492

 

  1. Hernández-Díaz Z, Peña-Sánchez M, González-Quevedo A, et al. Cerebral small vessel disease associated with subclinical vascular damage indicators in asymptomatic hypertensive patients. Behav Sci (Basel). 2019;9(9):91. doi: 10.3390/bs9090091

 

  1. Del Brutto V, Ortiz J, Del Brutto O, Mera R, Zambrano M, Biller J. Total cerebral small vessel disease score and cognitive performance in community-dwelling older adults. Results from the atahualpa project. Int J Geriatr Psychiatry. 2018;33(2):325-331. doi: 10.1002/gps.4747

 

  1. González-Quevedo A, González García S, Peña Sánchez M, et al. Detecting asymptomatic cerebral small vessel disease. Brain specific proteins as surrogate biomarkers. In: González-Quevedo A, Dambinova SA, Bettermann K, editors. Understanding and Treating Cerebral Small Vessel Disease. New York, USA: Nova Science Publishers; 2021. p231-266.

 

  1. Huang Y, Wang Z, Huang ZX, Liu Z. Biomarkers and the outcomes of ischemic stroke. Front Mol Neurosci. 2023;16:1171101. doi: 10.3389/fnmol.2023.1171101

 

  1. Papa L, McKinley WI, Valadka AB, et al. Diagnostic performance of GFAP, UCH-L1, and MAP-2 within 30 and 60 minutes of traumatic brain injury. JAMA Netw Open. 2024;7(9):e2431115. doi: 10.1001/jamanetworkopen.2024.31115

 

  1. Wen Q, Thukral R, Yang HC, et al. Longitudinal associations between blood biomarkers and white matter MRI in sport-related concussion: A study of the NCAA-DoD CARE consortium. Neurology. 2023;101(2):e189-e201. doi: 10.1212/WNL.0000000000207389

 

  1. Butkova TV, Malsagova KA, Nakhod VI, et al. Candidate molecular biomarkers of traumatic brain injury: A systematic review. Biomolecules. 2024;14(10):1283. doi: 10.3390/biom14101283

 

  1. Hoiland RL, Rikhraj KJK, Thiara S, et al. Neurologic prognostication after cardiac arrest using brain biomarkers: A systematic review and meta-analysis. JAMA Neurol. 2022;79(4):390-398. doi: 10.1001/jamaneurol.2021.5598

 

  1. Skitek M, Jerin A. N-methyl-D-aspartate-receptor antibodies, s100b protein, and neuron-specific enolase before and after cardiac surgery: Association with ischemic brain injury and erythropoetin prophylaxis. Lab Med. 2013;44(1):56-62. doi: 10.1309/LMZI8CEAATHRXR74

 

  1. Yoneda K, Hosomi S, Ito H, et al. How can heatstroke damage the brain? A mini review. Front Neurosci. 2024; 18:1437216. doi: 10.3389/fnins.2024.1437216

 

  1. Sigström R, Göteson A, Joas E, et al. Blood biomarkers of neuronal injury and astrocytic reactivity in electroconvulsive therapy. Mol Psychiatry. 2024. doi: 10.1038/s41380-024-02774-4

 

  1. Cooper J, Stukas S, Hoiland RL, et al. Quantification of neurological blood-based biomarkers in critically Ill patients with coronavirus disease 2019. Crit Care Explor. 2020;2(10):e0238. doi: 10.1097/CCE.0000000000000238

 

  1. Zonner S, Ejima K, Bevilacqua Z, et al. Association of increased serum S100B Levels with high school football subconcussive head impacts. Front Neurol. 2019;10:327. doi: 10.3389/fneur.2019.00327

 

  1. Dambinova S, Maroon J, Sufrinko A, Mullins J, Alexandrova E, Potapov A. Functional, structural, and neurotoxicity biomarkers in integrative assessment of concussions. Front Neurol. 2016;7:172. doi: 10.3389/fneur.2016.00172

 

  1. Kobeissy F, Moshourab R. Autoantibodies in CNS trauma and neuropsychiatric disorders: A new generation of biomarkers. In: Kobeissy F, editor. Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton, FL: CRC Press, Taylor & Francis; 2015.

 

  1. Gonzalez-Quevedo A, González García S, Fernández Concepción O, et al. Increased serum S-100B and neuron specific enolase - potential markers of early nervous system involvement in essential hypertension. Clin Biochem. 2011;44(2-3):154-159. doi: 10.1016/j.clinbiochem.2010.11.006

 

  1. Kaffashian S, Tzourio C, Soumaré A, et al. Plasma β-amyloid and MRI markers of cerebral small vessel disease: Three-city Dijon study. Neurology. 2014;83(22):2038-2045. doi: 10.1212/WNL.0000000000001038

 

  1. Gao Q, Fan Y, Mu LY, Ma L, Song ZQ, Zhang YN. S100B and ADMA in cerebral small vessel disease and cognitive dysfunction. J Neurol Sci. 2015;354:27-32. doi: 10.1016/j.jns.2015.04.031

 

  1. Li Y, Sun Y, Li J, et al. Changes of ubiquitin C-terminal hydrolase-L1 levels in serum and urine of patients with white matter lesions. J Neurol Sci. 2015;357:215-221. doi: 10.1016/j.jns.2015.07.033

 

  1. Janelidze S, Stomrudm E, Palmqvist S, et al. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci Rep. 2016;6:26801. doi: 10.1038/srep26801

 

  1. González-Quevedo A, González-García S, Hernández- Díaz Z, et al. Serum neuron specific enolase could predict subclinical brain damage and the subsequent occurrence of brain related vascular events during follow up in essential hypertension. J Neurol Sci. 2016;363:158-163. doi: 10.1016/j.jns.2016.02.052

 

  1. González-García S, González-Quevedo A, Hernandez-Diaz Z, et al. Circulating autoantibodies against the NR2 peptide of the NMDA receptor are associated with subclinical brain damage in hypertensive patients with other pre-existing conditions for vascular risk. J Neurol Sci. 2017;375: 324-330. doi: 10.1016/j.jns.2017.02.028

 

  1. Duering M, Konieczny M, Tiedt S, et al. Serum neurofilament light chain levels are related to small vessel disease burden. J Stroke. 2018;20(2):228-238. doi: 10.5853/jos.2017.02565

 

  1. Van Leijsen E, Kuiperij H, Kersten I, et al. Plasma Aβ (Amyloid-β) levels and severity and progression of small vessel disease. Stroke. 2018;49(4):884-890. doi: 10.1161/STROKEAHA.117.019810

 

  1. Dobrynina LA, Alexandrova EV, Zabitova MR, Kalashnikova LA, Krotenkova MV, Akhmetzyanov BM. Anti-NR2 glutamate receptor antibodies as an early biomarker of cerebral small vessel disease. Clin Biochem. 2021;96:26-32. doi: 10.1016/j.clinbiochem.2021.07.003

 

  1. Fohner AE, Bartz TM, Tracy RP, et al. Association of serum neurofilament light chain concentration and MRI findings in older adults: the cardiovascular health study. Neurology. 2022;98(9):e903-e911. doi: 10.1212/WNL.0000000000013229

 

  1. Ottavi TP, Pepper E, Bateman G, Fiorentino M, Brodtmann A. Consensus statement for the management of incidentally found brain white matter hyperintensities in general medical practice. Med J Aust. 2023;219(6):278-284. doi: 10.5694/mja2.52079

 

  1. Wardlaw JM, Woodhouse LJ, Mhlanga II, et al. Isosorbide mononitrate and cilostazol treatment in patients with symptomatic cerebral small vessel disease: The lacunar intervention trial-2 (LACI-2) randomized clinical trial. JAMA Neurol. 2023;80(7):682-692. doi: 10.1001/jamaneurol.2023.1526

 

  1. Markus HS, van Der Flier WM, Smith EE, et al. Framework for clinical trials in cerebral small vessel disease (FINESSE): A review. JAMA Neurol. 2022;79(11):1187-1198. doi: 10.1001/jamaneurol.2022.2262

 

  1. Blair G, Appleton JP, Mhlanga I, et al. Design of trials in lacunar stroke and cerebral small vessel disease: Review and experience with the LACunar intervention trial 2 (LACI-2). Stroke Vasc Neurol. 2024;30:581-594. doi: 10.1136/svn-2023-003022
Share
Back to top
Advanced Neurology, Electronic ISSN: 2810-9619 Print ISSN: 3060-8589, Published by AccScience Publishing