Machine learning-based recognition of epileptic and non-epileptic EEG signals

Epilepsy is a chronic neurological disorder affecting approximately 50 million people worldwide. Accurate and efficient detection of epileptic seizures is crucial for effective treatment and management. Electroencephalogram (EEG) signals, being non-invasive and rich in temporal information, are widely used for epilepsy diagnosis. However, manual inspection of EEG data is time-consuming and relies heavily on the expertise of clinicians. Machine learning techniques offer promising solutions for automating the classification of epileptic and non-epileptic EEG signals. In this study, we investigate the performance of various machine learning models – including Light Gradient Boosting Machine, deep learning architectures, and convolutional neural networks (CNN)—in classifying EEG signals for epilepsy detection. Our experiments demonstrate that CNN outperform other models due to their ability to capture complex spatial and temporal patterns inherent in EEG data. The CNN model achieved higher accuracy and better convergence, as evidenced by the confusion matrix and learning curves. In contrast, Deep Neural Networks without convolutional layers showed lower performance, likely due to their limitations in capturing the intricate features of EEG signals. Similarly, the Light Gradient Boosting Machine model exhibited good initial results but failed to generalize well to unseen data, possibly due to overfitting and lack of convergence. These findings highlight the potential of CNN-based approaches in the automated recognition of epileptic seizures using EEG signals, paving the way for more efficient and accurate diagnostic tools.
- Guerreiro CM. Epilepsy: Is there hope? Indian J Med Res. 2016;144(5):657-660. doi: 10.4103/ijmr.IJMR_1051_16
- Pothmann L, Klos C, Braganza O, et al. Altered dynamics of canonical feedback inhibition predicts increased burst transmission in chronic epilepsy. J Neurosci. 2019;39(45):8998-9012. doi: 10.1523/JNEUROSCI.2594-18.2019
- Fisher RS, Cross JH, D’Souza C, et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia. 2017;58(4):531-542. doi: 10.1111/epi.13671
- Blumenfeld H. Arousal and consciousness in focal seizures. Epilepsy Curr. 2021;21(5):353-359. doi: 10.1177/15357597211029507
- Brodovskaya A, Kapur J. Circuits generating secondarily generalized seizures. Epilepsy Behav. 2019;101:106474. doi: 10.1016/j.yebeh.2019.106474
- Benbadis SR, Beniczky S, Bertram E, MacIver S, Moshé SL. The role of EEG in patients with suspected epilepsy. Epileptic Disord. 2020;22(2):143-155. doi: 10.1684/epd.2020.1151
- Chen H, Koubeissi MZ. Electroencephalography in epilepsy evaluation. Continuum (Minneap Minn). 2019;25(2):431-453. doi: 10.1212/CON.0000000000000705
- Müller-Putz GR. Electroencephalography. Handb Clin Neurol. 2020;168:249-262. doi: 10.1016/b978-0-444-63934-9.00018-4
- Kappel SL, Kidmose P. High-density ear-EEG. Annu Int Conf IEEE Eng Med Biol Soc. 2017;2017:2394-2397. doi: 10.1109/embc.2017.8037338
- Leibetseder A, Eisermann M, LaFrance WC Jr., Nobili L, von Oertzen TJ. How to distinguish seizures from non‐epileptic manifestations. Epileptic Disord. 2020;22(6):716-738. doi: 10.1684/epd.2020.1234
- Mari-Acevedo J, Yelvington K, Tatum WO. Normal EEG variants. Handb Clin Neurol. 2019;160:143-160. doi: 10.1016/b978-0-444-64032-1.00009-6
- Kubota T, Kidokoro H, Narahara S, et al. Evaluation of interobserver variability in application of the new neonatal seizure classification proposed by the ILAE Task Force. Epilepsy Behav. 2020;111:107292. doi: 10.1016/j.yebeh.2020.107292
- Wilcox KS, West PJ, Metcalf CS. The current approach of the Epilepsy Therapy Screening Program contract site for identifying improved therapies for the treatment of pharmacoresistant seizures in epilepsy. Neuropharmacology. 2020;166:107811. doi: 10.1016/j.neuropharm.2019.107811
- Weissl J, Hülsmeyer V, Brauer C, et al. Disease progression and treatment response of idiopathic epilepsy in Australian shepherd dogs. J Vet Intern Med. 2011;26(1):116-125. doi: 10.1111/j.1939-1676.2011.00853.x
- Cao X, Zheng S, Zhang J, Chen W, Du G. A hybrid CNN-Bi-LSTM model with feature fusion for accurate epilepsy seizure detection. BMC Med Inform Decis Mak. 2025;25:6. doi: 10.1186/s12911-024-02845-0
- Saadoon YA, Khalil M, Battikh D. Predicting epileptic seizures using efficientnet-B0 and SVMs: A deep learning methodology for EEG analysis. Bioengineering (Basel). 2025;12(2):109. doi: 10.3390/bioengineering12020109
- Mallick S, Baths V. Novel deep learning framework for detection of epileptic seizures using EEG signals. Front Comput Neurosci. 2024;18:1340251. doi: 10.3389/fncom.2024.1340251
- Yang Y, Luan T, Yu Z, et al. Technological vanguard: The outstanding performance of the LTY-CNN model for the early prediction of epileptic seizures. J Transl Med. 2024;22:162. doi: 10.1186/s12967-024-04945-x
- Chong L, Husain G, Nasef D, Vathappallil P, Matalia M, Toma M. Machine learning strategies for improved cardiovascular disease detection. Med Res Arch. 2025;13(1):1-16. doi: 10.18103/mra.v13i1.6245
- U.S. Food and Drug Administration. Considerations for the Use of Artificial Intelligence to Support Regulatory Decision- Making for Drug and Biological Products. Draft Guidance for Industry and Other Interested Parties. Silver Spring, MD: U.S. Food and Drug Administration; 2025. Available from: https://www.fda.gov/media/184830/download [Last accessed on 2025 Mar 06].
- Benhassine O. Epilepsy Detection Using EEG Signals; 2021. Available from: https://www.kaggle.com/datasets/ oussamabenhassine/epilepsy-detection-using-eeg-signals [Last accessed on 2024 Dec 17].
- Engstrand RD, Moeller G. Confusion matrix analysis for form perception. Hum Factors. 1967;9(5):439-446. doi: 10.1177/001872086700900507
- Eelbode T, Sinonquel P, Maes F, Bisschops R. Pitfalls in training and validation of deep learning systems. Best Pract Res Clin Gastroenterol. 2021;52-53:101712. doi: 10.1016/j.bpg.2020.101712
- Pramanik A, Zimmerman MB, Jacob M. Memory-efficient model-based deep learning with convergence and robustness guarantees. IEEE Trans Comput Imaging. 2023;9:260-275. doi: 10.1109/tci.2023.3252268
- Sheridan RP, Wang WM, Liaw A, Ma J, Gifford EM. Extreme gradient boosting as a method for quantitative structure-activity relationships. J Chem Inf Model. 2016; 56(12):2353-2360. doi: 10.1021/acs.jcim.6b00591
- Charilaou P, Battat R. Machine learning models and over-fitting considerations. World J Gastroenterol. 2022;28(5):605-607. doi: 10.3748/wjg.v28.i5.605
- De Lima Prado T, Dos Santos Lima GZ, Lobão-Soares B, et al. Optimizing the detection of nonstationary signals by using recurrence analysis. Chaos. 2018;28(8):085703. doi: 10.1063/1.5022154
- Lo Giudice M, Varone G, Ieracitano C, et al. Permutation entropy-based interpretability of convolutional neural network models for interictal EEG discrimination of subjects with epileptic seizures vs. psychogenic non-epileptic seizures. Entropy (Basel). 2022;24(1):102. doi: 10.3390/e24010102
- Suzuki R, Yajima N, Sakurai K, et al. Association of patients’ past misdiagnosis experiences with trust in their current physician among Japanese Adults. J Gen Intern Med. 2021;37(5):1115-1121. doi: 10.1007/s11606-021-06950-y
- Ho SY, Phua K, Wong L, Bin Goh WW. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns (NY). 2020;1(8):100129. doi: 10.1016/j.patter.2020.100129
- Choi SR, Lee M. Transformer architecture and attention mechanisms in genome data analysis: A comprehensive review. Biology (Basel). 2023;12(7):1033. doi: 10.3390/biology12071033
- Lash TL, Abrams B, Bodnar LM. Comparison of bias analysis strategies applied to a large data set. Epidemiology. 2014;25(4):576-582. doi: 10.1097/ede.0000000000000102