From neuroimages to insights: Artificial intelligence-powered hybrid models for Alzheimer’s disease detection
Alzheimer’s disease (AD), a progressive neurodegenerative disease, is a major global public health problem. Early and accurate diagnosis is crucial for timely intervention, especially with the prevalence of the condition expected to triple by 2050. Traditional methods have been enhanced by artificial intelligence (AI)–driven techniques, particularly Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs). These approaches enhance the early detection and classification of diseases by evaluating complex neuroimaging data. Using Matrix Laboratory, we developed hybrid models integrating CNNs and SVMs to detect AD, focusing on feature extraction, predictive accuracy, and model interpretability for clinical use. While Internet of Things-–based wearable devices are reviewed for their potential in large-scale data processing and real-time monitoring, our empirical work emphasizes practical AI solutions. In conclusion, integration of multimodal neuroimaging data and advanced feature selection techniques holds the potential to enhance diagnostic precision of AD.

- Parra MA, Butler S, McGeown WJ, Brown Nicholls LA, Robertson DJ. Globalising strategies to meet global The case of ageing and dementia. J Glob Health. 2019;9(2):020310. doi: 10.7189/jogh.09.020310
- Al Mani TY, Sallam AM, Aldosary RA, AlGhamdi JA, Ghulam BM, Shamah WF. Impact of palliative care for dementia patients in tertiary hospitals among Saudi Arabia: A systemic review. Arch Pharm Pract. 2022;13(3):134-140. doi: 10.51847/2gfzkuzb1m
- Emmady PD. Major Neurocognitive Disorder (Dementia). StatPearls; 2022. Available from: https://www.ncbi.nlm.nih. gov/books/nbk557444 [Last accessed on 2025 Dec 02].
- 2016 Alzheimer’s Disease Facts and Figures - - 2016 - Alzheimer’s & Dementia - Wiley Online Library. Available from: https://alz-journals.onlinelibrary. wiley.com/doi/10.1016/j.jalz.2016.03.001 [Last accessed on 2025 Dec 02].
- Deb A, Thornton JD, Sambamoorthi U, Innes K. Direct and indirect cost of managing Alzheimer’s disease and related Dementias in the United States. Expert Rev Pharmacoecon Outcomes Res. 2017;17(2):189-202. doi: 10.1080/14737167.2017.1313118
- Surguchov A, Emamzadeh FN, Titova M, Surguchev AA. Controversial properties of amyloidogenic proteins and peptides: New data in the COVID ERA. Biomedicines. 2023;11(4):1215. doi: 10.3390/biomedicines11041215
- Jack CR, Bennett DA, Blennow K, et al. Nia-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14(4):535-562. doi: 10.1016/j.jalz.2018.02.018
- Dubois B, Feldman HH, Jacova C, et al. Revising the definition of Alzheimer’s disease: A new lexicon. Lancet Neurol. 2010;9(11):1118-1127. doi: 10.1016/s1474-4422(10)70223-4
- Porsteinsson AP, Isaacson RS, Knox S, Sabbagh MN, Rubino I. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021. J Prev Alzheimers Dis. 2021;8(3):371-386. doi: 10.14283/jpad.2021.23
- Kumar A. Alzheimer Disease. StatPearls; 2024. Available from: https://www.ncbi.nlm.nih.gov/books/nbk499922 [Last accessed on 2025 Dec 02].
- Ammar RB, Ayed YB. Language-related features for early detection of Alzheimer disease. Proc Comput Sci. 2020;176:763-770. doi: 10.1016/j.procs.2020.09.071
- Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-1590. doi: 10.1016/s0140-6736(20)32205-4
- Wells C, Horton J. An Overview of New and Emerging Technologies for Early Diagnosis of Alzheimer Disease. National Center for Biotechnology Information. Available from: https://www.ncbi.nlm.nih.gov/books/nbk605104 [Last accessed on 2025 Dec 02].
- Kale M, Wankhede N, Pawar R, et al. Ai-driven innovations in Alzheimer’s disease: Integrating early diagnosis, personalized treatment, and prognostic modelling. Ageing Res Rev. 2024;101:102497. doi: 10.1016/j.arr.2024.102497
- Akpinar E. Quantum machine learning in the cognitive domain: Alzheimer’s disease study. In: 2024 IEEE High Performance Extreme Computing Conference (HPEC); 2024. p. 1-6. doi: 10.1109/hpec62836.2024.10938482
- Salehi W, Gupta G, Bhatia S, Koundal D, Mashat A, Belay A. IOT-based wearable devices for patients suffering from Alzheimer disease. Contrast Media Mol Imaging. 2022;2022(1):3224939. doi: 10.1155/2022/3224939
- Balamurugan M, Nancy A, Vijaykumar S. Alzheimer’s disease diagnosis by using dimensionality reduction based on Knn classifier. Biomed Pharmacol J. 2017;10(4):1823-1830. doi: 10.13005/bpj/1299
- Feng C, Elazab A, Yang P, et al. Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBI-LSTM. IEEE Access. 2019;7:63605-63618. doi: 10.1109/access.2019.2913847
- Gray KR, Aljabar P, Heckemann RA, Hammers A, Rueckert D. Random Forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage. 2013;65:167-175. doi: 10.1016/j.neuroimage.2012.09.065
- Gupta M, Kumar R, Abraham A. Adversarial network-based classification for Alzheimer’s disease using multimodal brain images: A critical analysis. IEEE Access. 2024;12:48366-48378. doi: 10.1109/access.2024.3381956
- Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B. Support vector machines. IEEE Intellig Syst Application. 1998;13(4):18-28. doi: 10.1109/5254.708428
- Deepthi LD, Shanthi D, Buvana M. An Intelligent Alzheimer’s Disease Prediction using Convolutional Neural Network (CNN) by L. Available from: https://papers.ssrn.com/ sol3/papers.cfm?abstract_id=3597922 [Last accessed on 2025 Dec 02].
- Soto ME, Andrieu S, Arbus C, et al. Rapid cognitive decline in Alzheimer’s disease. Consensus paper. J Nutr Health Aging. 2008;12(10):703-713. doi: 10.1007/bf03028618
- Agrawal S, Pandharkar NS, Khandelwal PA, Pandhare PA, Deoghare JS. Alzheimer’s disease classification using deep CNN. Int J Sci Res Comput Sci Eng Inform Technol. 2021;7:325-331. doi: 10.32628/cseit217371
- Salomi M, Wadhera D, Madan P. Diagnosis of Alzheimer Stages by using CNN Architecture. In: 2024 5th International Conference for Emerging Technology (INCET); 2024. p. 1-6. doi: 10.1109/incet61516.2024.10593422
- Murugan S, Venkatesan C, Sumithra MG, et al. DEMNET: A deep learning model for early diagnosis of Alzheimer diseases and dementia from Mr Images. IEEE Access. 2021;9:90319-90329. doi: 10.1109/access.2021.3090474
- Kumar MS, Azath H, Velmurugan AK, Padmanaban K, Subbiah M. Prediction of Alzheimer’s disease using hybrid machine learning technique. AIP Conf Proc. 2023;2523:020091.doi: 10.1063/5.0110283
- Yang K, Mohammed EA. A Review of Artificial Intelligence Technologies for Early Prediction of Alzheimer’s Disease. Available from: https://ww.com/arXiv.org [Last accessed on 2025 Dec 02]. doi: 10.48550/arXiv.2101.01781
- Subasi A. Use of artificial intelligence in Alzheimer’s disease detection. In: Artificial Intelligence Precision Health. United States: Academic Press; 2020. p. 257-278. doi: 10.1016/b978-0-12-817133-2.00011-2
- Cabanillas-Carbonell M, Zapata-Paulini J. Evaluation of machine learning models for the prediction of Alzheimer’s: In search of the best performance. Brain Behav Immun Health. 2025;47:100957. doi: 10.1016/j.bbih.2025.100957
- Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr Neuropharmacol. 2020;18(11):1106-1125. doi: 10.2174/1570159x18666200528142429
- Bellio M, Oxtoby NP, Walker Z, et al. Analyzing large Alzheimer’s disease cognitive datasets: Considerations and challenges. Alzheimers Dement (Amst). 2020;12(1):e12135. doi: 10.1002/dad2.12135
- Hong X, Lin R, Yang C, et al. Predicting Alzheimer’s disease using LSTM. IEEE Access. 2019;7:80893-80901. doi: 10.1109/access.2019.2919385
- Jahan S, Saif Adib R, Mahmud M, Kaiser MS. Comparison between explainable AI algorithms for Alzheimer’s disease prediction using efficient net models. In: Lecture Notes in Computer Science. Berlin: Springer; 2023. p. 357-368. doi: 10.1007/978-3-031-43075-6_31
- Dao Q, El-Yacoubi MA, Rigaud AS. Detection of Alzheimer disease on online handwriting using 1D convolutional neural network. IEEE Access. 2023;11:2148-2155. doi: 10.1109/access.2022.3232396
- Srivastava S, Divekar AV, Anilkumar C, Naik I, Kulkarni V, Pattabiraman V. Comparative analysis of deep learning image detection algorithms. J Big Data. 2021;8(1):66. doi: 10.1186/s40537-021-00434-w
- Dalianis H. Evaluation metrics and evaluation. In: Clinical Text Mining. Berlin: Springer; 2018. p. 45-53. doi: 10.1007/978-3-319-78503-5_6
- Bari Antor M, Jamil AH, Mamtaz M, et al. A comparative analysis of machine learning algorithms to predict Alzheimer’s disease. J Healthc Eng. 2021;2021:9917919. doi: 10.1155/2021/9917919
- Rainio O, Teuho J, Klén R. Evaluation metrics and statistical tests for machine learning. Sci Rep. 2024;14(1):6086. doi: 10.1038/s41598-024-56706-x
- Ray PP. A survey on internet of things architectures. J King Saud Univ Comput Inform Sci. 2018;30(3):291-319. doi: 10.1016/j.jksuci.2016.10.003
- Rejeb A, Rejeb K, Treiblmaier H, et al. The internet of things (IOT) in healthcare: Taking stock and moving forward. Int Things. 2023;22:100721. doi: 10.1016/j.iot.2023.100721
- Jara AJ, Zamora-Izquierdo MA, Skarmeta AF. Interconnection framework for mHealth and remote monitoring based on the internet of things. IEEE J Select Areas Commun. 2013;31(9):47-65. doi: 10.1109/jsac.2013.sup.0513005
- Rayan RA, Tsagkaris C, Iryna RB. The internet of things for healthcare: Applications, selected cases and challenges. In: Studies in Computational Intelligence. Berlin: Springer; 2021. p. 1-15. doi: 10.1007/978-981-15-9897-5_1
- Valsalan P, Hasan NU, Baig I, Zghaibeh M. Remote healthcare monitoring using expert system. Int J Adv Comput Sci Appl. 2022;13(3):593. doi: 10.14569/ijacsa.2022.0130370
- Sahu ML, Atulkar M, Ahirwal MK, Ahamad A. Cloud-based remote patient monitoring system with abnormality detection and alert notification. Mobile Netw Appl. 2022;27(5):1894-1909. doi: 10.1007/s11036-022-01960-4
- Boonsong W, Senajit N, Prasongchan P. Contactless body temperature monitoring of in-patient department (IPD) using 2.4 GHz microwave frequency via the internet of things (IOT) network. Wireless Personal Commun. 2021;124(3):1961-1976. doi: 10.1007/s11277-021-09438-4
- Imtyaz Ahmed M, Kannan G. Secure and lightweight privacy preserving internet of things integration for remote patient monitoring. J King Saud Univ Comput Inform Sci. 2022;34(9):6895-6908. doi: 10.1016/j.jksuci.2021.07.016
- Deepa S, Sridhar KP, Baskar S, Mythili KB, Reethika A, Hariharan PR. IOT-enabled smart healthcare data and health monitoring based machine learning algorithms. J Intelli Fuzzy Syst. 2023;44(2):2927-2941. doi: 10.3233/jifs-221274
- Bushnag A. A wireless ECG Monitoring and analysis system using the IOT Cloud. Intellig Autom Soft Comput. 2022;33(1):51-70. doi: 10.32604/iasc.2022.024005
- Rahman S, Parveen S, Sofi SA, Zahoor S. Post-covid remote patient monitoring using medical internet of things and machine learning analytics. Scalable Comput Pract Exp. 2023;24(1):1-16. doi: 10.12694/scpe.v24i1.2008
- Ali FI, Ali TE, Al-Dahan ZT. Private backend server software-based Telehealthcare Tracking and monitoring system. Int J Online Biomed Eng. 2023;19(01):119-134. doi: 10.3991/ijoe.v19i01.32433
- Balasubramanian K, Prabu AV, Shaik MF, Naik RA, Suguna SK. A hybrid deep learning for patient activity recognition (PAR): Real time body wearable sensor network from healthcare monitoring system (HMS). J Intellig Fuzzy Syst. 2023;44(1):195-211. doi: 10.3233/jifs-212958
- Abdulhussein TA, Al-Falahi HA, Ahmed Smait D, Alani S, Mahmood SN, Mustafa MS. Early coronavirus disease detection using internet of things smart system. Int J Electr Comput Eng. 2023;13(1):1161. doi: 10.11591/ijece.v13i1.pp1161-1168
- Cong J, Wang X, Yan C, Yang LT, Dong M, Ota K. CRB weighted source localization method based on deep neural networks in Multi-UAV network. IEEE Int Things J. 2023;10(7):5747-5759. doi: 10.1109/jiot.2022.3150794
- Le NT, Thwe Chit MM, Truong TL, et al. Deployment of smart specimen transport system using RFID and Nb-IOT technologies for hospital laboratory. Sensors (Basel). 2023;23(1):546. doi: 10.3390/s23010546
- García-Requejo A, Pérez-Rubio MC, Villadangos JM, Hernández Á. Activity monitoring and location sensory system for people with mild cognitive impairments. IEEE Sens J. 2023;23(5):5448-5458. doi: 10.1109/jsen.2023.3239980
- Zappatore M, Longo A, Martella A, Di Martino B, Esposito A, Gracco SA. Semantic models for IOT sensing to infer environment-wellness relationships. Fut Gen Comput Syst. 2023;140:1-17. doi: 10.1016/j.future.2022.10.005
- Yoganapriya R, Deepthi P, Dhinakaran M. IOT based COVID patient health monitoring system. Int J Eng Technol Manage Sci. 2023;7(1):82-87. doi: 10.46647/ijetms.2023.v07i01.015
- Karthik M, Sreevidya L, Nithya Devi R, Thangaraj M, Hemalatha G, Yamini R. An efficient waste management technique with IOT based smart garbage system. Mater Today Proceed. 2023;80:3140-3143. doi: 10.1016/j.matpr.2021.07.179
- Bhatt V, Chakraborty S. Improving service engagement in healthcare through internet of things based healthcare systems. J Sci Technol Policy Manag. 2021;14(1):53-73. doi: 10.1108/jstpm-03-2021-0040
- Ni Ki C, Hosseinian-Far A, Daneshkhah A, Salari N. Topic modelling in precision medicine with its applications in personalized diabetes management. Exp Syst. 2021;39(4):e12774. doi: 10.1111/exsy.12774
- Zholdas N, Mansurova M, Postolache O, Kalimoldayev M, Sarsembayeva T. A personalized mHealth monitoring system for children and adolescents with T1 diabetes by utilizing IOT sensors and assessing physical activities. Int J Comput Commun Control. 2022;17(3):2-14. doi: 10.15837/ijccc.2022.3.4558
- Kang IA, Ngnamsie Njimbouom S, Lee KO, Kim JD. DCP: Prediction of dental caries using machine learning in personalized medicine. Appl Sci. 2022;12(6):3043. doi: 10.3390/app12063043
- Sravani MVS, Poojitha P, Joshi P, Prathyusha B. 5G-smart diabetes: Toward personalized diabetes diagnosis with healthcare big data clouds. IEEE Commun Magaz. 2018;56:16-23. doi: 10.1109/MCOM.2018.1700788
- Karthick GS, Pankajavalli PB. Chronic obstructive pulmonary disease prediction using internet of things-spiro system and fuzzy-based quantum neural network classifier. Theor Comput Sci. 2023;941:55-76. doi: 10.1016/j.tcs.2022.08.021
- Jia Z, Shi Y, Hu J. Personalized neural network for patient-specific health monitoring in IOT: A metalearning approach. IEEE Trans Comput Aided Design Integr Circuits Syst. 2022;41(12):5394-5407. doi: 10.1109/tcad.2022.3162182
- Stavropoulos TG, Lazarou I, Diaz A, et al. Wearable devices for assessing function in Alzheimer’s disease: A European public involvement activity about the features and preferences of patients and caregivers. Front Aging Neurosci. 2021;13:643135. doi: 10.3389/fnagi.2021.643135
- Sarma AD, Devi M. Artificial Intelligence in diabetes management: Transformative potential, challenges, and opportunities in healthcare. Hormones (Athens). 2025;24(2):307-322. doi: 10.1007/s42000-025-00644-4
- Ahmed A, Aziz S, Abd-alrazaq A, Farooq F, Sheikh J. Overview of artificial intelligence-driven wearable devices for diabetes: Scoping review. J Med Internet Res. 2022;24(8):e36010. doi: 10.2196/36010
- Makroum MA, Adda M, Bouzouane A, Ibrahim H. Machine learning and smart devices for diabetes management: Systematic review. Sensors (Basel). 2022;22(5):1843. doi: 10.3390/s22051843
- Iftikhar M, Saqib M, Qayyum SN, et al. Artificial intelligence-driven transformations in diabetes care: A comprehensive literature review. Ann Med Surg (Lond). 2024;86(9):5334-5342. doi: 10.1097/ms9.0000000000002369
- LaBoone PA, Marques O. Overview of the future impact of wearables and artificial intelligence in healthcare workflows and technology. Int J Inform Manag Data Insights. 2024;4(2):100294. doi: 10.1016/j.jjimei.2024.100294
- Briganti G, Le Moine O. Artificial intelligence in medicine: Today and tomorrow. Front Med (Lausanne). 2020;7:27. doi: 10.3389/fmed.2020.00027
- Fernandez Montenegro JM, Argyriou V. Cognitive evaluation for the diagnosis of Alzheimer’s disease based on turing test and virtual environments. Physiol Behav. 2017;173:42-51. doi: 10.1016/j.physbeh.2017.01.034
- Sai Krishna K, Sarma KJ, Bamane KD, Prasad J, Tiwari M, Karthikeyan T. Alzheimer disease detection using AI with deep learning based features with development and validation based on data science. J Adv Zool. 2023;44(S4):91-99. doi: 10.17762/jaz.v44is4.2174
- Marcus DS, Wang TH, Parker J, Csernansky JG, Morris JC, Buckner RL. Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci. 2007;19(9):1498-1507. doi: 10.1162/jocn.2007.19.9.1498
