AccScience Publishing / AIH / Online First / DOI: 10.36922/aih.5173
ORIGINAL RESEARCH ARTICLE

Artificial intelligence within medical diagnostics: A multi-disease perspective

Zarif Bin Akhtar*
Show Less
1 Department of Computing, Institute of Electrical and Electronics Engineers, Piscataway, United States of America
Submitted: 16 October 2024 | Revised: 9 December 2024 | Accepted: 12 December 2024 | Published: 6 January 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Artificial intelligence (AI) has become a transformative technology in medical diagnostics, enabling enhanced analysis of complex clinical data and supporting precise, efficient decision-making across diverse disease areas. This study explores the multi-disease application of AI in diagnosing cancer, cardiovascular diseases, neurological disorders, and infectious diseases, focusing on its role in improving diagnostic accuracy, speeding diagnostic processes, and facilitating early disease detection. By employing machine learning, deep learning, and neural network models, this study critically examines the performance of specific models – such as recurrent neural networks and support vector machines – in diverse healthcare contexts. Challenges addressed include data privacy, annotated dataset needs, overfitting risks, and ethical concerns such as AI bias and transparency, all of which are fundamental to ensuring patient safety and health equity. In addition, this study integrates security considerations, such as fault detection in cryptographic architectures, providing insights into the resilience of AI systems in healthcare. Future research directions, including the potential of AI in real-time patient monitoring, personalized medicine, and multispectral imaging, are proposed to expand AI’s utility in diagnostics. A comparative evaluation with traditional clinical diagnostics underscores AI’s validation potential, emphasizing its need for robust regulatory frameworks, particularly concerning global health standards (e.g., TRIPOD-AI and CONSORT-AI) and data privacy regulations such as Health Insurance Portability and Accountability Act and General Data Protection Regulation. Ultimately, AI-driven diagnostic systems show strong promise to revolutionize medical practice and improve patient outcomes, contingent on addressing the technical, ethical, and regulatory challenges involved. This research supports AI’s growing role in healthcare, providing a foundational understanding of both its current contributions and future potential across disease-specific applications.

Keywords
Artificial intelligence
Biomedical applications
Data informatics
Deep learning
Healthcare informatics
Machine learning
Medical informatics
Funding
None.
Conflict of interest
The author declares no competing interests for this research.
References
  1. Developing an Aging Clock Using deep Learning on Retinal Images; 2023. Available from: https://research.google/ blog/developing-an-aging-clock-using-deep-learning-on-retinal-images [Last accessed on 2024 Dec 18].

 

  1. Akhtar ZB. Generative artificial intelligence (GAI): From large language models (LLMs) to multimodal applications towards fine tuning of models, implications, investigations. Comput Artif Intell. 2024;3(1):1498. doi: 10.59400/cai.v3i1.1498

 

  1. Jimma BL. Artificial intelligence in healthcare: A bibliometric analysis. Telematics Inform Rep. 2023;9:100041. doi: 10.1016/j.teler.2023.100041

 

  1. Akhtar Z. Computer vision and beyond: A deep dive exploration and investigation. Trends Tech Sci Res. 2024;7(3):555711. doi: 10.19080/TTSR.2024.07.555711

 

  1. Lyakhova U, Lyakhov P. Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: Development and prospects. Comput Biol Med. 2024;178:108742. doi: 10.1016/j.compbiomed.2024.108742

 

  1. Sankar H, Alagarsamy R, Lal B, et al. Role of artificial intelligence in treatment planning and outcome prediction of jaw corrective surgeries by using 3-D imaging- A systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2024. doi: 10.1016/j.oooo.2024.09.010

 

  1. Qiu Y, Cheng F. Artificial intelligence for drug discovery and development in Alzheimer’s disease. Curr Opin Struct Biol. 2024;85:102776. doi: 10.1016/j.sbi.2024.102776

 

  1. Ghanem M, Ghaith AK, Bydon M. Artificial intelligence and personalized medicine: transforming patient care. In: New Era of Precision Medicine. Netherlands: Elsevier; 2024. p. 131-42. doi: 10.1016/b978-0-443-13963-5.00012-1

 

  1. Snider V, Homsi K, Kusnoto B, et al. Clinical evaluation of artificial intelligence driven remote monitoring technology for assessment of patient oral hygiene during orthodontic treatment. Am J Orthodont Dentofacial Orthop. 2024;165(5):586-592. doi: 10.1016/j.ajodo.2023.12.008

 

  1. Akhtar ZB, Rawol AT. Artificial intelligence (AI), extended reality (XR): A biomedical engineering (BME) perspective investigation analysis. RPC J Bio Med Clin Res. 2024;6(3).

 

  1. Akhtar ZB. Operating systems (OS): An insight investigative research analysis and future directions. J Technol Informat (JoTI). 2024;6(1):58-69. doi: 10.37802/joti.v6i1.637

 

  1. Akhtar ZB, Rawol AT. Harnessing artificial intelligence (AI) for cybersecurity: Challenges, opportunities, risks, future directions. Comput Artif. Intell. 2024;2(2):1485. doi: 10.59400/cai.v2i2.1485

 

  1. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med Educ. 2023;23:689. doi: 10.1186/s12909-023-04698-z

 

  1. Akhtar ZB, Tajbiul Rawol A. Enhancing cybersecurity through AI-powered security mechanisms. IT J Res Dev. 2024;9(1):50-67. doi: 10.25299/itjrd.2024.16852

 

  1. Li Q, Yang X, Xu J, et al. Early prediction of Alzheimer’s disease and related dementias using real-world electronic health records. Alzheimers Dement. 2023;19(8):3506-3518. doi: 10.1002/alz.12967

 

  1. Ayers JW, Poliak A, Dredze M, et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med. 2023;183(6):589-596. doi: 10.1001/jamainternmed.2023.1838

 

  1. Akhtar ZB, Stany Rozario V. The Design Approach of An Artificial Human Brain in Digitized Formulation Based on ML and Neural Mapping. In: 2020 International Conference for Emerging Technology (INCET), Belgaum, India; 2020. p. 1-7. doi: 10.1109/INCET49848.2020.9154000

 

  1. Bin Akhtar Z. Accelerated computing a biomedical engineering and medical science perspective. Ann Acad Rom Sci Se Biol Sci. 2023;12:138-164. doi: 10.56082/annalsarscibio.2023.2.138

 

  1. Akhtar ZB, Gupta AD. Advancements within molecular engineering for regenerative medicine and biomedical applications an investigation analysis towards a computing retrospective. J Electron Electromed Eng Med Inform. 2024;6(1):54-72. doi: 10.35882/jeeemi.v6i1.351

 

  1. Akhtar ZB, Gupta AD. Integrative approaches for advancing organoid engineering: From mechanobiology to personalized therapeutics. J Appl Artif Intell. 2024;5(1):1-27. doi: 10.48185/jaai.v5i1.974

 

  1. Akhtar ZB. The design approach of an artificial intelligent (AI) medical system based on electronical health records (EHR) and priority segmentations. J Eng. 2024;2024:1-10. doi: 10.1049/tje2.12381

 

  1. Akhtar ZB. Exploring biomedical engineering (BME): Advances within accelerated computing and regenerative medicine for a computational and medical science perspective exploration analysis. J Emerg Med OA. 2024;2(1):1-23.

 

  1. Akhtar Z. Biomedical engineering (BME) and medical health science: AN investigation perspective exploration. Quantum J Med Health Sci. 2024;3(3):1-24.

 

  1. Akhtar ZB, Tajbiul Rawol A. Unlocking the future for the new data paradigm of DNA data storage: An investigative analysis of advancements, challenges, future directions. J Info Sci. 2024;23(1):23-44. doi: 10.34874/IMIST.PRSM/jis-v23i1.47102

 

  1. Akhtar ZB, Tajbiul Rawol A. Transformative impacts of artificial intelligence (AI) and extended reality (XR) on biomedical engineering (BME): Innovations, implications, challenges, opportunities. J Adv Artif Intell. 2024;2(2):60-78.

 

  1. Akhtar ZB. Unveiling the evolution of generative AI (GAI): A comprehensive and investigative analysis toward LLM models (2021-2024) and beyond. J Electr Syst Inf Technol 2024;11:22. doi: 10.1186/s43067-024-00145-1

 

  1. Bin Akhtar Z. From bard to Gemini: An investigative exploration journey through Google’s evolution in conversational AI and generative AI. Comput Artif Intell. 2024;2(1):1378. doi: 10.59400/cai.v2i1.1378

 

  1. Bin Akhtar Z. Unraveling the promise of computing DNA data storage: An investigative analysis of advancements, challenges, future directions. J Adv Artif Intell. 2024;2(1):122-137.

 

  1. Akhtar ZB. Securing operating systems (OS): A comprehensive approach to security with best practices and techniques. Int J Adv Netw Monit Controls. 2024;9(1):100-111. doi: 10.2478/ijanmc-2024-0010

 

  1. Akhtar ZB, Rawol AT. Uncovering cybersecurity vulnerabilities: A kali linux investigative exploration perspective. Int J Adv Netw Monit Controls. 2024;9(2):11-22. doi: 10.2478/ijanmc-2024-0012

 

  1. Bin Akhtar Z. Artificial intelligence (AI) within manufacturing: An investigative exploration for opportunities, challenges, future directions. Metaverse. 2024;5(2):2731. doi: 10.54517/m.v5i2.2731

 

  1. Vayadande K, Bhosle AA, Pawar RG, Joshi DJ, Bailke PA, Lohade O. Innovative approaches for skin disease identification in ML: A comprehensive study. Oral Oncol Rep. 2024;10:100365-100365. doi: 10.1016/j.oor.2024.100365

 

  1. Lai C, Fuggle NR, Matin RN, Tanaka RJ, Rajan N. Artificial intelligence and ML in dermatological research and healthcare: British society for investigative dermatology skin club Report-Southampton April 2024. Br J Dermatol. 2024;192:118-124. doi: 10.1093/bjd/ljae395

 

  1. Liu X, Duan C, Kim MK, Zhang L, et al. Comparative Performance of Claude-3 Opus and ChatGPT-4 in Dermoscopic Image Analysis for Melanoma Diagnosis. JMIR Medical Informatics [Preprint]; 2024. doi: 10.2196/59273

 

  1. Gassner M, Garcia JB, Tanadini-Lang S, et al. Saliency-enhanced content-based image retrieval for diagnosis support in dermatology consultation: Reader study. JMIR Dermatol. 2023;6:e42129-e42129. doi: 10.2196/42129

 

  1. Komuro J, Kusumoto D, Hashimoto H, Yuasa S. Machine learning in cardiology: Clinical application and basic research. J Cardiol. 2023;82(2):128-133. doi: 10.1016/j.jjcc.2023.04.020

 

  1. Papachristou P, Söderholm M, Pallon J, et al. Evaluation of an artificial intelligence-based decision support for detection of cutaneous melanoma in primary care-a prospective, real-life, clinical trial. Br J Dermatol. 2024;191:125-133. doi: 10.1093/bjd/ljae021

 

  1. Naser MA, Majeed AA, Alsabah M, Al-Shaikhli TR, Kaky KM. A review of ML’s role in cardiovascular disease prediction: Recent advances and future challenges. Algorithms. 2024;17(2):78. doi: 10.3390/a17020078

 

  1. Selvi DMK, Aswini J, Balakrishnan C, Suganya K, Sheena BG, Subramanian RS. Revolutionizing cardiovascular care: The role of AI, ML, and DL in early heart disease prediction and treatment. In: 2024 International Conference on Electronics, Computing, Communication and Control Technology (ICECCC), Bengaluru, India; 2024. p. 1-6. doi: 10.1109/ICECCC61767.2024.10593941

 

  1. He B, Kwan AC, Cho JH, et al. Blinded, randomized trial of sonographer versus AI cardiac function assessment. Nature. 2023;616(7957):520-524. doi: 10.1038/s41586-023-05947-3

 

  1. Deo RC. Artificial intelligence and ML in cardiology. Circulation. 2024;149(16):1235-1237. doi: 10.1161/circulationaha.123.065469

 

  1. Bax M, Thorpe J, Romanov V. The future of personalized cardiovascular medicine demands 3D and 4D printing, stem cells, and artificial intelligence. Front Sens. 2023;4. doi: 10.3389/fsens.2023.1294721

 

  1. Alabdaljabar MS, Hasan B, Noseworthy PA, Maalouf JF, Ammash NM, Hashmi SK. Machine learning in cardiology: A potential real-world solution in low-and middle-income countries. J Multidiscip Healthc. 2023;16:285-295. doi: 10.2147/jmdh.s383810

 

  1. Rodríguez M, Córdova C, Benjumeda I, San Martín S. Automated cervical cancer screening using single-cell segmentation and deep learning: Enhanced performance with liquid-based cytology. Computation. 2024;12:232. doi: 10.3390/computation12120232

 

  1. Vaickus LJ, Kerr DA, Torres JMV, Levy J. Artificial intelligence applications in cytopathology: Current state of the art. Surg Pathol Clin. 2024;17:521-531. doi: 10.1016/j.path.2024.04.011

 

  1. Wu A, Ngo M, Thomas C. Assessment of patient perceptions of artificial intelligence use in dermatology: A cross‐sectional survey. Skin Res Technol. 2024;30(3):e13656. doi: 10.1111/srt.13656

 

  1. Tan IJ, Podwojniak A, Parikh A, Cohen BA. Precision dermatology: A review of molecular biomarkers and personalized therapies. Curr Issues Mol Biol. 2024; 46(4):2975-2990. doi: 10.3390/cimb46040186

 

  1. McMullen E, Grewal R, Storm K, et al. Diagnosing contact dermatitis using machine learning: A review. Contact Dermatitis. 2024;91(3):186-189. doi: 10.1111/cod.14595

 

  1. Kaushik P, Chopra Y, Kajla A, Poonia M, Khan A, Yadav D. AI-Powered Dermatology: Achieving Dermatologist- Grade Skin Cancer Classification. In: 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). Vol. 2. United States: IEEE; 2024. p. 1-6.

 

  1. Gordon ER, Trager MH, Kontos D, et al. Ethical considerations for artificial intelligence in dermatology: A scoping review. Br J Dermatol. 2024;190:789-797. doi: 10.1093/bjd/ljae040

 

  1. Yadav R, Bhat A. A Survey on Skin Lesion Detection and Classification using ML. In: 2024 2nd International Conference on Artificial Intelligence and ML Applications Theme: Healthcare and Internet of Things (AIMLA). United States: IEEE; 2024. p. 1-5. doi: 10.1109/aimla59606.2024.10531571

 

  1. Klarycki J, Tomczyk K, Podgórska D, et al. AI in dermatology: Bridging the gap between potential and practice. J Educ Health Sport. 2024;52:57-73. doi: 10.12775/jehs.2024.52.004

 

  1. Goshisht MK. Machine learning and deep learning in synthetic biology: Key architectures, applications, and challenges. ACS omega. 2024;9(9):9921-9945. doi: 10.1021/acsomega.3c05913

 

  1. Noordijk B, Garcia Gomez ML, Ten Tusscher KH, De Ridder D, Van Dijk AD, Smith RW. The rise of scientific machine learning: A perspective on combining mechanistic modelling with machine learning for systems biology. Front Syst Biol. 2024;41:407994. doi: 10.3389/fsysb.2024.1407994

 

  1. Artificial Intelligence: 10 Promising Interventions for Healthcare. NIHR Evidence. National Institute for Health and Care Research; 2023. doi: 10.3310/nihrevidence_59502

 

  1. Iacucci M, Parigi TL, Del Amor R, et al. Artificial intelligence enabled histological prediction of remission or activity and clinical outcomes in ulcerative colitis. Gastroenterology. 2023;164(7):1180-1188.e2. doi: 10.1053/j.gastro.2023.02.031

 

  1. Kim HY, Cho GJ, Kwon HS. Applications of artificial intelligence in obstetrics. Ultrasonography. 2023;42(1):2-9. doi: 10.14366/usg.22063

 

  1. Saraf S, De A, Tripathy BK. Effective use of computational biology and artificial intelligence in the domain of medical oncology. In: Computational Intelligence for Oncology and Neurological Disorders. United States: CRC Press; 2024. p. 228-252.

 

  1. Farhat F, Sohail SS, Alam MT, et al. COVID-19 and beyond: leveraging artificial intelligence for enhanced outbreak control. Front Artif Intell. 2023;6:1266560. doi: 10.3389/frai.2023.1266560

 

  1. Catacutan DB, Alexander J, Arnold A, Stokes JM. Machine learning in preclinical drug discovery. Nat Chem Biol. 2024;20(8):960-973. doi: 10.1038/s41589-024-01679-1

 

  1. AI Could Make Health Care Fairer-by Helping us believe what Patients Say. MIT Technology Review; 2023.

 

  1. Udegbe FC, Ebulue OR, Ebulue CC, Ekesiobi CS. Synthetic Biology and its Potential in US Medical Therapeutics: A Comprehensive Review: Exploring the Cutting-edge Intersections of Biology and Engineering in Drug Development and Treatments. Eng Sci Technol J. 2024;5(4):1395-1414.

 

  1. Stevens S, Wu J, Thompson MJ, et al. Bioclip: A Vision Foundation Model for the Tree of Life. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2024. p. 19412-19424.

 

  1. Jeong H, Park S, Choi B, Yu CS, Hong JY, Jeong TY, Cho KH. Machine learning-based water quality prediction using octennial in-situ Daphnia magna biological early warning system data. J Hazardous Mater. 2024;465:133196. doi: 10.1016/j.jhazmat.2023.133196

 

  1. Rood JE, Hupalowska A, Regev A. Toward a foundation model of causal cell and tissue biology with a perturbation cell and tissue atlas. Cell. 2024;187(17):4520-4545.

 

  1. Shaban AS, Owda ME, Basuoni MM, Mousa MA, Radwan AA, Saleh AK. Punica granatum peel extract mediated green synthesis of zinc oxide nanoparticles: Structure and evaluation of their biological applications. Biomass Convers Biorefin. 2024;14(11):12265-12281. doi: 10.1007/s13399-022-03185-7

 

  1. DeGroat W, Abdelhalim H, Patel K, Mendhe D, Zeeshan S, Ahmed Z. Discovering biomarkers associated and predicting cardiovascular disease with high accuracy using a novel nexus of machine learning techniques for precision medicine. Sci Rep. 2024;14(1):1. doi: 10.1038/s41598-023-50600-8

 

  1. Martin SS, Aday AW, Almarzooq ZI, et al. 2024 heart disease and stroke statistics: A report of US and global data from the American Heart Association. Circulation. 2024;149(8):e347-e913. doi: 10.1161/CIR.0000000000001209

 

  1. Ogunpola A, Saeed F, Basurra S, Albarrak AM, Qasem SN. Machine Learning-based predictive models for detection of cardiovascular diseases. Diagnostics. 2024;14(2):144. doi: 10.3390/diagnostics14020144

 

  1. Ogunpola A, Saeed F, Basurra S, Albarrak AM, Qasem SN. Machine learning-based predictive models for detection of cardiovascular diseases. Diagnostics. 2024;14(2):144. doi: 10.3390/diagnostics14020144

 

  1. Terranova N, Venkatakrishnan K. Machine learning in modeling disease trajectory and treatment outcomes: An emerging enabler for model‐informed precision medicine. Clin Pharmacol Therapeut. 2024;115(4):720-726. doi: 10.1002/cpt.3153

 

  1. Tayebi Arasteh S, Han T, Lotfinia M, et al. Large language models streamline automated machine learning for clinical studies. Nat Commun. 2024;15(1):1603. doi: 10.1038/s41467-024-45879-8

 

  1. Hussain I, Nazir MB. Empowering healthcare: AI, ML, and deep learning innovations for brain and heart health. Int J Adv Eng Technol Innov. 2024;1(4):167-188.

 

  1. Khandakar S, Al Mamun MA, Islam MM, Hossain K, Melon MMH, Javed MS. Unveiling early detection and prevention of cancer: Machine learning and deep learning approaches. Educ Adm Theory Pract. 2024;30(5):14614-14628. doi: 10.53555/kuey.v30i5.7014

 

  1. Bintintan V, Burz C, Pintea I, et al. The importance of extracellular vesicle screening in gastric cancer: A 2024 update. Cancers (Basel). 2024;16(14):2574. doi: 10.3390/cancers16142574

 

  1. Gontero P, Birtle A, Capoun O, et al. European association of urology guidelines on non-muscle-invasive bladder cancer (TaT1 and carcinoma in situ)-a summary of the 2024 guidelines update. Eur Urol. 2019;76:639-657. doi: 10.1016/j.eururo.2019.08.016

 

  1. Bin Akhtar Z. Artificial intelligence (AI) within the realm of cyber security. Insight Electr Electron Eng. 2024;1(1):1-11.

 

  1. Bin Akhtar Z, Rawol AT. A biomedical engineering (BME) perspective investigation analysis: Artificial intelligence (AI) and extended reality (XR). Eng Adv. 2024;4(3):143-154. doi: 10.26855/ea.2024.07.005

 

  1. Leung JH, Karmakar R, Mukundan A, et al. Systematic meta-analysis of computer-aided detection of breast cancer using hyperspectral imaging. Bioeng (Basel). 2024;11(11):1060. doi: 10.3390/bioengineering11111060

 

  1. Shanthakumar D, Leiloglou M, Kelliher C, Darzi A, Elson DS, Leff DR. A comparison of spectroscopy and imaging techniques utilizing spectrally resolved diffusely reflected light for intraoperative margin assessment in breast-conserving surgery: A systematic review and meta-analysis. Cancers. 2023;15(11):2884. doi: 10.3390/cancers15112884
Share
Back to top
Artificial Intelligence in Health, Electronic ISSN: 3029-2387 Print ISSN: 3041-0894, Published by AccScience Publishing