AccScience Publishing / AC / Online First / DOI: 10.36922/ac.4446
REVIEW ARTICLE

A systematic review of augmented reality in mathematics education: Fostering learning through art integration

Nymfodora Voulgari1 Michail Panagopoulos1* Varvara Garneli1
Show Less
1 Department of Audio and Visual Arts, Faculty of Music and Audiovisual Arts, Ionian University, Corfu, Corfu, Greece
Submitted: 5 August 2024 | Accepted: 14 October 2024 | Published: 20 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Augmented reality (AR) is acknowledged as a promising educational tool fostering the manipulation, visualization, and contextualization of abstract concepts to enhance student motivation and comprehension. However, the lack of educator training in AR implementation underscores the necessity for further research and support for effective integration into teaching practices. To this end, this article conducts a systematic review based on the PRISMA guidelines to analyze 20 English-language journal articles from the SCOPUS database, wherein geometry emerges as the most extensively studied topic with AR potential. This paper provides insights into the successful integration and impact of AR in mathematics education along with an exploration of incorporating art elements in aiding students’ understanding of mathematical concepts and their social–emotional and cognitive development. Furthermore, this study examines challenges in using AR technology in mathematics education, such as teacher training and technical implementation. The findings of this study are expected to provide a clearer understanding of the potential role of AR in mathematics education.

Keywords
Augmented reality
Mathematics education
Arts in mathematics
Systematic review
Funding
None.
Conflict of interest
Michail Panagopoulos is an Editorial Board Member of this journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Vuță DR. Augmented reality technologies in education - A Literature review. Bull Transilvania Univ Brasov Ser V Econ Sci. 2020;13(62):35-46. doi: 10.31926/but.es.2020.13.62.2.4

 

  1. Cangas D, Morga G, Rodríguez JL. Geometry teaching experience in virtual reality with NeoTrie VR Geometry teaching experience with NeoTrie VR. Psychology. 2019;11(3):355-366. doi: 10.25115/psye.v10i1.2270

 

  1. Rodríguez JL, Romero I, Codina A. The influence of neotrie vr’s immersive virtual reality on the teaching and learning of geometry. Mathematics. 2021;9(19):2411. doi: 10.3390/math9192411

 

  1. Wu HK, Lee SW, Chang HY, Liang JC. Current status, opportunities and challenges of augmented reality in education. Comput Educ. 2013;62:41-49. doi: 10.1016/j.compedu.2012.10.024

 

  1. Azuma RT. Drascic, 1993; Feiner, 1994a, b; Milgram Etal.; 1995. Available from: https://www.cs.unc.edu/~azuma [Last accessed on 2024 Nov 18].

 

  1. Kesim M, Ozarslan Y. Augmented reality in education: Current technologies and the potential for education. Proc Soc Behav Sci. 2012;47:297-302. doi: 10.1016/j.sbspro.2012.06.654

 

  1. Milgram P, Takemura H, Utsumi A, Kishino F. Augmented reality: A class of displays on the reality-virtuality continuum. In: Proc. SPIE 2351, Telemanipulator and Telepresence Technologies. 1995. p. 282-292. doi: 10.1117/12.197321

 

  1. Tzima S, Styliaras G, Bassounas A. Augmented reality applications in education: Teachers point of view. Educ Sci (Basel). 2019;9(2):99. doi: 10.3390/educsci9020099

 

  1. Ahmad NI, Junaini SN. Augmented reality for learning mathematics: A systematic literature review. Int J Emerg Technol Learn. 2020;15(16):106-122. doi: 10.3991/ijet.v15i16.14961

 

  1. Ibáñez MB, Delgado-Kloos C. Augmented reality for STEM learning: A systematic review. Comput Educ. 2018;123:109-123. doi: 10.1016/j.compedu.2018.05.002

 

  1. Budinski N, Lavicza Z. Teaching Advanced Mathematical Concepts with Origami and GeoGebra Augmented Reality. Available from: https://www.geogebra.com [Last accessed on 2024 Nov 18].

 

  1. Gunčaga J, Budai L, Kenderessy T. Visualisation in geometry education as a tool for teaching with better understanding. Teach Math Computer Sci. 2020;18(4):337-346. doi: 10.5485/tmcs.2020.0499

 

  1. Kim SJS, Sanchez A, Hanifzai JF, Palispis F, Nishimura K. The OTC (Object to Camera) Approach to Visualize Behind Stories of Museum Exhibits. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11786 LNCS. Germany: Springer Verlag; 2019. p. 243-252. doi: 10.1007/978-3-030-30033-3_19

 

  1. Koutromanos G, Sofos A, Avraamidou L. The use of augmented reality games in education: A review of the literature. EMI Educ Media Int. 2015;52(4):253-271. doi: 10.1080/09523987.2015.1125988

 

  1. Dana-Picard T, Hershkovitz S. Geometrical features of a Jewish monument: Study with a DGS. J Math Arts. 2019;13(1-2):60-71. doi: 10.1080/17513472.2018.1552067

 

  1. Jesionkowska J, Wild F, Deval Y. Active learning augmented reality for steam education-a case study. Educ Sci (Basel). 2020;10(8):1-15. doi: 10.3390/educsci10080198

 

  1. Altinpulluk H. Determining the trends of using augmented reality in education between 2006-2016. Educ Inf Technol (Dordr). 2019;24(2):1089-1114. doi: 10.1007/s10639-018-9806-3

 

  1. Botana F, Kovács Z, Recio T. Automatically Augmented Reality for Outdoor Mathematics. In: Research on Outdoor STEM Education in the Digital Age. Proceedings of the ROSETA Online Conference in June 2020. Münster: WTM-Verlag; 2020. p. 71-78. doi: 10.37626/ga9783959871440.0.09

 

  1. Li S, Shen Y, Jiao X, Cai S. Using augmented reality to enhance students’ representational fluency: The case of linear functions. Mathematics. 2022;10:1718. doi: 10.3390/math10101718

 

  1. Elsayed SA, Al-Najrani HI. Effectiveness of the augmented reality on improving the visual thinking in mathematics and academic motivation for middle school students. Eurasia J Math Sci Technol Educ. 2021;17(8):em1991. doi: 10.29333/ejmste/11069

 

  1. Alibraheim EA, Hassan HF, Soliman MW. Efficacy of educational platforms in developing the skills of employing augmented reality in teaching mathematics. Eurasia J Math Sci Technol Educ. 2023;19(11):em2348. doi: 10.29333/ejmste/13669

 

  1. Del Cerro Velázquez F, Méndez GM. Application in augmented reality for learning mathematical functions: A study for the development of spatial intelligence in secondary education students. Mathematics. 2021;9(4):369. doi: 10.3390/math9040369

 

  1. Cascales-Martínez A, Martínez-Segura MJ, Pérez-López D, Contero M. Using an augmented reality enhanced tabletop system to promote learning of mathematics: A case study with students with special educational needs. Eurasia J Math Sci Technol Educ. 2017;13(2):355-380. doi: 10.12973/eurasia.2017.00621a

 

  1. Fernández-Enríquez R, Delgado-Martín L. Augmented reality as a didactic resource for teaching mathematics. Appl Sci (Switzerland). 2020;10(7):2560. doi: 10.3390/app10072560

 

  1. Flores-Bascuñana M, Diago PD, Villena-Taranilla R, Yáñez DF. On augmented reality for the learning of 3D-geometric contents: A preliminary exploratory study with 6-grade primary students. Educ Sci (Basel). 2020;10(1):4. doi: 10.3390/educsci10010004

 

  1. Salinas P, González-Mendívil E. Augmented reality and solids of revolution. Int J Interact Design Manuf. 2017; 11(4):829-837. doi: 10.1007/s12008-017-0390-3

 

  1. Salinas P, Pulido R. Understanding the conics through augmented reality. Eurasia J Math Sci Technol Educ. 2017;13(2):341-354. doi: 10.12973/eurasia.2017.00620a

 

  1. Awang K, Shamsuddin SN, Ismail I, Rawi NA, Amin MM. The usability analysis of using augmented reality for Linus students. Indones J Electr Eng Computer Sci. 2019;13(1): 58-64. doi: 10.11591/ijeecs.v13.i1.pp58-64

 

  1. Kounlaxay K, Shim Y, Kang SJ, Kwak HY, Kim SK. Learning media on mathematical education based on augmented reality. KSII Trans Internet Inform Syst. 2021;15(3):1015-1029. doi: 10.3837/tiis.2021.03.011

 

  1. Vakaliuk TA, Shevchuk LD, Shevchuk BV. Possibilities of using AR and VR technologies in teaching mathematics to high school students. Univ J Educ Res. 2020;8(11B): 6280-6288. doi: 10.13189/ujer.2020.082267

 

  1. Lozada-Yánez R, La-Serna-Palomino N, Molina-Granja F. Augmented reality and MS-Kinect in the learning of basic mathematics: KARMLS case. Int Educ Stud. 2019;12(9):54. doi: 10.5539/ies.v12n9p54

 

  1. Bagossi S, Swidan O, Arzarello F. Timeline tool for analyzing the relationship between students-teachers-artifacts interactions and meaning-making. J Math Educ. 2022;13(2):357-382. doi: 10.22342/jme.v13i2.pp357-382

 

  1. El Bedewy S, Lavicza Z, Lyublinskaya I. STEAM practices connecting mathematics, arts, architecture, culture and history in a non-formal learning environment of a museum. J Math Arts. 2024;18(1-2):101-134. doi: 10.1080/17513472.2024.2321563

 

  1. El Bedewy S, Lavicza Z, Haas B, Lieban D. A STEAM practice approach to integrate architecture, culture and history to facilitate mathematical problem-solving. Educ Sci (Basel). 2022;12(1):9. doi: 10.3390/educsci12010009

 

  1. El Bedewy S, Choi K, Lavicza Z, Fenyvesi K, Houghton T. STEAM practices to explore ancient architectures using augmented reality and 3D printing with GeoGebra. Open Educ Stud. 2021;3(1):176-187. doi: 10.1515/edu-2020-0150

 

  1. Farella M, Arrigo M, Taibi D, Todaro G, Chiazzese G, Fulantelli G. ARLectio: An augmented reality platform to support teachers in producing educational resources. In: CSEDU 2020 - Proceedings of the 12th International Conference on Computer Supported Education. Vol 2. Portugal: SciTePress; 2020. p. 469-475. doi: 10.5220/0009579104690475

 

  1. Nindiasari H, Pranata MF, Sukirwan S, et al. The use of augmented reality to improve students’ geometry concept problem-solving skills through the STEAM approach. Infinity J. 2024;13(1):119-138. doi: 10.22460/infinity.v13i1.p119-138

 

  1. Prodromou T. Augmented Reality in Educational Settings. Netherlands: BRILL; 2020. doi: 10.1163/9789004408845

 

  1. Sendova E, Grkovska S. Visual modeling as a motivation for studying mathematics and art. EMI Educ Media Int. 2005;42(2):173-180. doi: 10.1080/09523980500060332

 

  1. Shabanova M, Bezumova O, Zatsepina E, Malysheva S, Kotova S, Ovchinnikova R. Learning stereometry in a secondary school within GeoGebra’s Augmented Reality app. J Phys Conf Ser. 2020;1691:e012115. doi: 10.1088/1742-6596/1691/1/012115

 

  1. Majeed BH, ALRikabi HT. Effect of augmented reality technology on spatial intelligence among high school students. Int J Emerg Technol Learn. 2022;17(24):131-143. doi: 10.3991/ijet.v17i24.35977

 

  1. Budinski N, Lavicza Z, Fenyvesi K. Ideas for Using GeoGebra and Origami in Teaching Regular Polyhedrons Lessons. Vol 4. Available from: https://www.geogebra.org [Last accessed on 2024 Nov 19].

 

  1. Țurcanu C, Prodea BM, Constantin C. The opportunity of using augmented reality in educating disadvantaged children. Bull Transilvania Univ Braşov Ser V. 2018;11:73-77.

 

  1. Estapa A, Nadolny L. The Effect of an Augmented Reality Enhanced Mathematics Lesson on Student Achievement and Motivation. Available from: https://www.layar.com

 

  1. Papaioannou G. Augmented reality in museums and cultural heritage settings. In: Augmented Reality in Educational Settings. Netherlands: BRILL; 2019. p. 369-382. doi: 10.1163/9789004408845_016

 

  1. Serpe A, Frassia MG. Promote connections between mathematics drawing and history of art in high school through a stem approach. In: AAPP Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali. 2021. p. 99. doi: 10.1478/AAPP.99S1A5

 

  1. Ariño-Morera B, Benito A, Nolla Á, Recio T, Seoane E. Looking at Okuda’s artwork through GeoGebra: A Citizen science experience. AIMS Math. 2023;8(8):17433-17447. doi: 10.3934/math.2023890

 

  1. Rizzo KA, Del Río LS, Manceñido ME, Lavicza Z, Houghton T. Linking photography and mathematics with the use of technology. Open Educ Stud. 2019;1(1):262-266. doi: 10.1515/edu-2019-0020

 

  1. Hershkovitz T, Lavicza S, Fenyvesi Z. Introducing Golden Section in the Mathematics Class to Develop Critical Thinking from the STEAM Perspective. Vol 2.; 2021. Available from: http://rightsstatements.org/page/ InC/1.0/?language=enhttp://journal.seameo-stemed.org/ index.php/stemed/archives [Last accessed on 2024 Nov 19].

 

  1. Alkhabra YA, Ibrahem UM, Alkhabra SA. Augmented reality technology in enhancing learning retention and critical thinking according to STEAM program. Humanit Soc Sci Commun. 2023;10(1):174. doi: 10.1057/s41599-023-01650-w

 

  1. Cahyono AN, Sukestiyarno YL, Asikin M, Miftahudin M, Ahsan MG, Ludwig M. Learning mathematical modelling with augmented reality mobile math trails program: How can it work? J Math Educ. 2020;11(2):181-192. doi: 10.22342/jme.11.2.10729.181-192
Share
Back to top
Arts & Communication, Electronic ISSN: 2972-4090 Published by AccScience Publishing