Peroxisome proliferator-activated receptor agonists as an adjuvant for cancer therapy: A review
Cancer is now one of the leading diseases responsible for the highest mortality rates worldwide. Cancer treatment is extremely intricate and is often associated with less targeted effects and more side effects. In the last few years, two significant revolutions in cancer treatment have altered treatment paradigms: immuno-oncology and the pursuit of actionable changes in oncogene-driven cancers. Significant obstacles continue to exist in both areas of cancer treatment. Next-generation sequencing technologies for molecular prescreening in clinical research are advancing, but their widespread clinical use is hindered by challenges related to the clinical interpretation of large genomic data. Moreover, cancer mono-chemotherapy is associated with issues such as inadequate efficacy, drug resistance, and systemic toxicity. It is not possible to administer cytotoxic drugs limitlessly. Combination therapy was developed in response to this circumstance, with the expectation of achieving high therapeutic efficacy at lower dosages of medication. Peroxisome proliferator-activated receptors (PPARs) are a group of essential lipid sensors and metabolic pathway regulators. In addition, they possess the ability to modulate immunity, inflammation, and endothelial nitric oxide synthase activation. Alongside their well-established functions, new insights into the roles of PPAR agonists in cancer research are emerging. After reviewing current research, it is evident that PPAR modulators have significant potential for managing cancer. This review aims to consolidate the functions of PPAR ligands alongside other cancer therapies. We provide a comprehensive perspective on the applicability of PPAR ligands in cancer treatment as an adjuvant.
- Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi: 10.1177/20503121211034366
- Yang C, Xia BR, Zhang ZC, Zhang YJ, Lou G, Jin WL. Immunotherapy for ovarian cancer: adjuvant, combination, and neoadjuvant. Front Immunol. 2020;11:577869. doi: 10.3389/fimmu.2020.577869
- Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine. CA Cancer J Clin. 2019;69(4):280-304. doi: 10.3322/caac.21559
- Wang ZB, Liu D, Lei G, Liu ZQ, Wu N, Wang J. Ovarian cancer-targeted medication: PARP inhibitors, anti-angiogenic drugs, immunotherapy, and more. Front Pharmacol. 2023;14:1222209. doi: 10.3389/fphar.2023.1222209
- Padma VV. An overview of targeted cancer therapy. Biomedicine (Taipei). 2015;5(4):19. doi: 10.7603/s40681-015-0019-4
- Lim ZF, Ma PC. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J Hematol Oncol. 2019;12(1):134. doi: 10.1186/s13045-019-0818-2
- Emran TB, Shahriar A, Mahmud AR, et al. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front Oncol. 2022;12:891652. doi: 10.3389/fonc.2022.891652
- Safri F, Nguyen R, Zerehpooshnesfchi S, George J, Qiao L. Heterogeneity of hepatocellular carcinoma: From mechanisms to clinical implications. Cancer Gene Ther. 2024;31:1105-1112. doi: 10.1038/s41417-024-00764-w
- Jackson C, Finikarides L, Freeman ALJ. The adverse effects of trastuzumab-containing regimes as a therapy in breast cancer: A piggy-back systematic review and meta-analysis. PLoS One. 2022;17(12):e0275321. doi: 10.1371/journal.pone.0275321
- Shuel SL. Targeted cancer therapies: Clinical pearls for primary care. Can Fam Physician. 2022;68(7):515-518. doi: 10.46747/cfp.6807515
- Levinson K, Dorigo O, Rubin K, Moore K. Immunotherapy in gynecologic cancers: What we know now and where we are headed. Am Soc Clin Oncol Educ Book. 2019;39:126-140. doi: 10.1200/EDBK_237967
- Lobenwein D, Kocher F, Dobner S, Gollmann- Tepeköylü C, Holfeld J. Cardiotoxic mechanisms of cancer immunotherapy - A systematic review. Int J Cardiol. 2021;323:179-187. doi: 10.1016/j.ijcard.2020.08.033
- Palaia I, Tomao F, Sassu CM, Musacchio L, Benedetti Panici P. immunotherapy for ovarian cancer: Recent advances and combination therapeutic approaches. Onco Targets Ther. 2020;13:6109-6129. doi: 10.2147/OTT.S205950
- Muthukutty P, Woo HY, Ragothaman M, Yoo SY. Recent advances in cancer immunotherapy delivery modalities. Pharmaceutics. 2023;15(2):504. doi: 10.3390/pharmaceutics15020504
- Li B, Jiang HY, Wang ZH, Ma YC, Bao YN, Jin Y. Effect of fenofibrate on proliferation of SMMC-7721 cells via regulating cell cycle. Hum Exp Toxicol. 2021;40(7):1208-1221. doi: 10.1177/0960327121991901
- Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics 2009. CA Cancer J Clin. 2009;59(4):225-249. doi: 10.3322/caac.20006
- Gunthert AR, Grundker C, Hollmann K, Emons G. Luteinizing hormone-releasing hormone induces JunD-DNA binding and extends cell cycle in human ovarian cancer cells. Biochem Biophys Res Commun. 2002;294:11-15. doi: 10.1016/S0006-291X(02)00427-8
- Gründker C, Emons G. The role of gonadotropin-releasing hormone in cancer cell proliferation and metastasis. Front Endocrinol (Lausanne). 2017;8:187. doi: 10.3389/fendo.2017.00187
- Kara M, Ozcagli E, Fragkiadaki P, et al. Determination of DNA damage and telomerase activity in stanozolol-treated rats. Exp Ther Med. 2017;13(2):614-618. doi: 10.3892/etm.2016.3974
- George A, McLachlan J, Tunariu N, et al. The role of hormonal therapy in patients with relapsed high-grade ovarian carcinoma: A retrospective series of tamoxifen and letrozole. BMC Cancer. 2017;17(1):456. doi: 10.1186/s12885-017-3440-0
- Joseph JD, Lu N, Qian J, et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov. 2013;3(9):1020-1029. doi: 10.1158/2159-8290.CD-13-0226
- Korpal M, Korn JM, Gao X, et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 2013;3(9):1030-1043. doi: 10.1158/2159-8290.CD-13-0142
- Balbas MD, Evans MJ, Hosfield DJ, et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife. 2013;2:e00499. doi: 10.7554/eLife.00499
- Feng LX, Li M, Liu YJ, Yang SM, Zhang N. Synergistic enhancement of cancer therapy using a combination of ceramide and docetaxel. Int J Mol Sci. 2014;15(3):4201-4220. doi: 10.3390/ijms15034201
- Duarte D, Vale N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr Res Pharmacol Drug Discov. 2022;3:100110. doi: 10.1016/j.crphar.2022.100110
- Rathaur P, Soni MN, Gelat B, Rawal R, Pandya HA, Johar K. Network pharmacology-based evaluation of natural compounds with paclitaxel for the treatment of metastatic breast cancer. Toxicol Appl Pharmacol. 2021;423:115576. doi: 10.1016/j.taap.2021.115576
- Rodrigues R, Duarte D, Vale N. Drug repurposing in cancer therapy: Influence of patient’s genetic background in breast cancer treatment. Int J Mol Sci. 2022;23(8):4280. doi: 10.3390/ijms23084280
- Jourdan JP, Bureau R, Rochais C, Dallemagne P. Drug repositioning: A brief overview. J Pharm Pharmacol. 2020;72(9):1145-1151. doi: 10.1111/jphp.13273
- Oprea TI, Mestres J. Drug repurposing: Far beyond new targets for old drugs. AAPS J. 2012;14(4):759-763. doi: 10.1208/s12248-012-9390-1
- Patel B, Gelat B, Soni M, Rathaur P, Kaid Johar SR. Bioinformatics perspective of drug repurposing. Curr Bioinform. 2024;19(4):295-315. doi: 10.2174/0115748936264692230921071504
- Kulkarni VS, Alagarsamy V, Solomon VR, Jose PA, Murugesan S. Drug repurposing: An effective tool in modern drug discovery. Russ J Bioorg Chem. 2023;49(2):157-166. doi: 10.1134/S1068162023020139
- Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR agonists and metabolic syndrome: An established role? Int J Mol Sci. 2018;19(4):1197. doi: 10.3390/ijms19041197
- Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. Eur J Med Chem. 2019;166:502-513. doi: 10.1016/j.ejmech.2019.01.067
- van Raalte DH, Li M, Pritchard PH, Wasan KM. Peroxisome proliferator-activated receptor (PPAR)-α: A pharmacological target with a promising future. Pharm Res. 2004;21:1531-1538. doi: 10.1023/b: pham.0000041444.06122.8d
- Corrales P, Vidal-Puig A, Medina-Gómez G. PPARs and metabolic disorders associated with challenged adipose tissue plasticity. Int J Mol Sci. 2018;19(7):2124. doi: 10.3390/ijms19072124
- Gross B, Pawlak M, Lefebvre P, Staels B. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 2017;13(1):36-49. doi: 10.1038/nrendo.2016.135.
- Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236-240. doi: 10.4103/2231-4040.90879
- Tan Y, Wang M, Yang K, Chi T, Liao Z, Wei P. PPAR-α modulators as current and potential cancer treatments. Front Oncol. 2021;11:599995. doi: 10.3389/fonc.2021.599995
- Chi T, Wang M, Wang X, et al. PPAR-γ modulators as current and potential cancer treatments. Front Oncol. 2021;11:737776. doi: 10.3389/fonc.2021.737776
- Cheng HS, Tan WR, Low ZS, Marvalim C, Lee JYH, Tan NS. Exploration and development of PPAR modulators in health and disease: An update of clinical evidence. Int J Mol Sci. 2019;20(20):5055. doi: 10.3390/ijms20205055
- Kim SY, Kim MS, Lee MK, et al. PPAR-γ induces growth inhibition and apoptosis through upregulation of insulin-like growth factor-binding protein-3 in gastric cancer cells. Braz J Med Biol Res. 2015;48(3):226-233. doi: 10.1590/1414-431X20144212
- Skelhorne-Gross G, Nicol CJB. The key to unlocking the chemotherapeutic potential of PPAR-γ ligands: Having the right combination. PPAR Res. 2012;2012:946943. doi: 10.1155/2012/946943
- Panigrahy D, Kaipainen A, Huang S, et al. PPARα agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc Natl Acad Sci. 2008;105(3):985-990. doi: 10.1073/pnas.0711281105
- Rigano D, Sirignano C, Taglialatela-Scafati O. The potential of natural products for targeting PPARα. Acta Pharm Sinica B. 2017;7(4):427-438. doi: 10.1016/j.apsb.2017.05.005
- Chiarelli F, Marzio DD. Peroxisome proliferator-activated receptor-γ agonists and diabetes: Current evidence and future perspectives. Vasc Health Risk Manag. 2008;4(2):297-304. doi: 10.2147/vhrm.s993
- Ngoc LP, Man HY, Besselink H, Cam HD, Brouwer A, van der Burg B. Identification of PPAR-activating compounds in herbal and edible plants and fungi from Vietnam. Ind Crops Prod. 2019;129:195-200. doi: 10.1016/j.indcrop.2018.12.003
- Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm Res. 2019;68:443-458. doi: 10.1007/s00011-019-01231-1
- Wu L, Guo C, Wu J. Therapeutic potential of PPARγ natural agonists in liver diseases. J Cell Mol Med. 2020;24(5):2736-2748. doi: 10.1111/jcmm.15028
- Park KS, Choi SH, Chung SS. Re-highlighting the action of PPARγ in treating metabolic diseases [version 1; referees: 2 approved]. F1000Res. 2018;7:1127. doi: 10.12688/f1000research.14136.1
- Wang L, Waltenberger B, Pferschy-Wenzig EM, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem Pharmacol. 2014;92(1):73-89. doi: 10.1016/j.bcp.2014.07.018
- Lebovitz HE. Thiazolidinediones: The forgotten diabetes medications. Curr Diab Rep. 2019;19(12):151. doi: 10.1007/s11892-019-1270-y
- Krishnappa M, Patil K, Sharma S, et al. Effectiveness of The PPAR Agonist Saroglitazar in Nonalcoholic Steatohepatitis: Positive Data from Preclinical and Clinical Studies. Preprint (Version 1), Research Square; 2020. doi: 10.21203/rs.3.rs-123364/v1
- Harrity T, Farrelly D, Tieman A, et al. Muraglitazar, a novel dual (α/γ) peroxisome proliferator–activated receptor activator, improves diabetes and other metabolic abnormalities and preserves β-cell function in db/db mice. Diabetes. 2006;55(1):240-248. doi: 10.1111/jcmm.15028
- Fagerberg B, Edwards S, Halmos T, et al. Tesaglitazar, a novel dual peroxisome proliferator-activated receptor α/γ agonist, dose-dependently improves the metabolic abnormalities associated with insulin resistance in a non-diabetic population. Diabetologia. 2005;48:1716-1725. doi: 10.1007/s00125-005-1846-8
- Augimeri G, Giordano C, Gelsomino L, et al. The role of PPAR-γ ligands in breast cancer: From basic research to clinical studies. Cancers (Basel). 2020;12(9):2623. doi: 10.3390/cancers12092623
- Kim TW, Hong DW, Hong SH. CB13, a novel PPARγ ligand, overcomes radio-resistance via ROS generation and ER stress in human non-small cell lung cancer. Cell Death Dis. 2020;11(10):848. doi: 10.1038/s41419-020-03065-w
- Youssef J, Badr M. Peroxisome proliferator-activated receptors and cancer: Challenges and opportunities. Br J Pharmacol. 2011;164(1):68-82. doi: 10.1111/j.1476-5381.2011.01383.x
- Nguyen M, Shing Y, Folkman J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res. 1994;47(1):31-40. doi: 10.1006/mvre.1994.1003
- Aviel-Ronen S, Blackhall FH, Shepherd FA, Tsao MS. K-ras mutations in non-small-cell lung carcinoma: A review. Clin Lung Cancer. 2006;8(1):30-38. doi: 10.3816/CLC.2006.n.030
- Girnun GD, Chen L, Silvaggi J, et al. Regression of drug-resistant lung cancer by the combination of rosiglitazone and carboplatin. Clin Cancer Res. 2008;14(20):6478-6486. doi: 10.1158/1078-0432.CCR-08-1128
- Xu YJ, Zheng Z, Cao C, Li J, Liu Y. Bioanalytical insights into the association between eicosanoids and pathogenesis of hepatocellular carcinoma. Cancer Metastasis Rev. 2018;37:269-277. doi: 10.1007/s10555-018-9747-8
- Panigrahy D, Kaipainen A, Greene ER, Huang S. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer. Cancer Metastasis Rev. 2010;29:723-735. doi: 10.1007/s10555-010-9264-x
- Wu L, Wang W, Dai M, Li H, Chen C, Wang D. PPAR-α ligand, AVE8134, and cyclooxygenase inhibitor therapy synergistically suppress lung cancer growth and metastasis. BMC Cancer. 2019;19(1):1166. doi: 10.1186/s12885-019-6379-5
- Mustafa A, Kruger WD. Suppression of tumor formation by a cyclooxygenase-2 inhibitor and a peroxisome proliferator-activated receptor gamma agonist in an in vivo mouse model of spontaneous breast cancer. Clin Cancer Res. 2008;14(15):4935-4942. doi: 10.1158/1078-0432.CCR-08-0958
- Malakouti P, Mohammadi M, Boshagh MA, Amini A, Rezaee MA, Rahmani MR. Combined effects of pioglitazone and doxorubicin on migration and invasion of MDA-MB-231 breast cancer cells. J Egypt Natl Canc Inst. 2022;34(1):13. doi: 10.1186/s43046-022-00110-x
- Pfeffer CM, Singh ATK. Apoptosis: A target for anticancer therapy. Int J Mol Sci. 2018;19(2):448. doi: 10.3390/ijms19020448
- Elstner E, Müller C, Koshizuka K, et al. Ligands for peroxisome proliferator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci U S A. 1998;95(15):8806-8811. doi: 10.1073/pnas.95.15.8806
- Ramos-Nino ME, Littenberg B. A novel combination: ranpirnase and rosiglitazone induce a synergistic apoptotic effect by down-regulating Fra-1 and Survivin in cancer cells. Mol Cancer Ther. 2008;7(7):1871-1879. doi: 10.1158/1535-7163.MCT-08-0308
- Miao R, Xu T, Liu L, et al. Rosiglitazone and retinoic acid inhibit proliferation and induce apoptosis in the HCT-15 human colorectal cancer cell line. Exp Ther Med. 2011;2(3):413-417. doi: 10.3892/etm.2011.227
- Cao LQ, Wang XL, Wang Q, et al. Rosiglitazone sensitizes hepatocellular carcinoma cell lines to 5-fluorouracil antitumor activity through activation of the PPARgamma signaling pathway. Acta Pharmacol Sin. 2009;30(9):1316-1322. doi: 10.1038/aps.2009.119
- Saidi SA, Holland CM, Charnock-Jones DS, Smith SK. In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer. Mol Cancer. 2006;5:13. doi: 10.1186/1476-4598-5-13
- Hamaguchi N, Hamada H, Miyoshi S, et al. In vitro and in vivo therapeutic efficacy of the PPAR-γ agonist troglitazone in combination with cisplatin against malignant pleural mesothelioma cell growth. Cancer Sci. 2010;101(9):1955-1964. doi: 10.1111/j.1349-7006.2010.01632.x
- Copland JA, Marlow LA, Kurakata S, et al. Novel high-affinity PPARgamma agonist alone and in combination with paclitaxel inhibits human anaplastic thyroid carcinoma tumor growth via p21WAF1/CIP1. Oncogene. 2006;25(16):2304-2317. doi: 10.1038/sj.onc.1209267
- Alqahtani QH, Alkharashi LA, Alajami H, Alkharashi I, Alkharashi L, Alhinti SN. Pioglitazone enhances cisplatin’s impact on triple-negative breast cancer: Role of PPAR-γ in cell apoptosis. Saudi Pharm J. 2024;32(5):102059. doi: 10.1016/j.jsps.2024.102059
- Pouya FD, Salehi R, Rasmi Y, Kheradmand F, Fathi- Azarbayjani A. Combination chemotherapy against colorectal cancer cells: Co-delivery of capecitabine and pioglitazone hydrochloride by polycaprolactone-polyethylene glycol carriers. Life Sci. 2023;332:122083. doi: 10.1016/j.lfs.2023.122083
- Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer. 2021;124(1):102-114. doi: 10.1038/s41416-020-01149-0
- Wang Q, Peng H, Qi X, Wu M, Zhao X. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence. Signal Transduct Target Ther. 2020;5(1):137. doi: 10.1038/s41392-020-0199-6
- Lyon CM, Klinge DM, Do KC, et al. Rosiglitazone prevents the progression of preinvasive lung cancer in a murine model. Carcinogenesis. 2009;30(12):2095-2099. doi: 10.1093/carcin/bgp260
- Annicotte JS, Iankova I, Miard S, et al. Peroxisome proliferator-activated receptor gamma regulates E-cadherin expression and inhibits growth and invasion of prostate cancer. Mol Cell Biol. 2006;26(20):7561-7574. doi: 10.1128/MCB.00605-06
- Huang G, Yin L, Lan J, et al. Synergy between peroxisome proliferator-activated receptor γ agonist and radiotherapy in cancer. Cancer Sci. 2018;109(7):2243-2255. doi: 10.1111/cas.13650
- Chen X, Duan N, Zhang C, Zhang W. Survivin and tumorigenesis: Molecular mechanisms and therapeutic strategies. J Cancer. 2016;7(3):314. doi: 10.7150/jca.13332
- Bie Q, Dong H, Jin C, Zhang H, Zhang B. 15d-PGJ2 is a new hope for controlling tumor growth. Am J Transl Res. 2018;10(3):648-658.
- Wang Y, Tan H, Xu D, et al. The combinatory effects of PPAR-γ agonist and survivin inhibition on the cancer stem-like phenotype and cell proliferation in bladder cancer cells. Int J Mol Med. 2014;34(1):262-268. doi: 10.3892/ijmm.2014.1774
- Nogueira V, Hay N. Molecular pathways: Reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin Cancer Res. 2013;19(16):4309-4314. doi: 10.1158/1078-0432.CCR-12-1424
- Arfin S, Jha NK, Jha SK, et al. Oxidative stress in cancer cell metabolism. Antioxidants (Basel). 2021;10(5):642. doi: 10.3390/antiox10050642
- Knopfová L, Smarda J. The use of Cox-2 and PPAR-γ signaling in anti-cancer therapies. Exp Ther Med. 2010;1(2):257-264. doi: 10.3892/etm_00000040
- Han EJ, Im CN, Park SH, Moon EY, Hong SH. Combined treatment with peroxisome proliferator-activated receptor (PPAR) gamma ligands and gamma radiation induces apoptosis by PPAR-γ-independent up-regulation of reactive oxygen species-induced deoxyribonucleic acid damage signals in non-small cell lung cancer cells. Int J Radiat Oncol Biol Phys. 2013;85(5):e239-e248. doi: 10.1016/j.ijrobp.2012.11.040
- Park BH, Lee SB, Stolz DB, Lee YJ, Lee BC. Synergistic interactions between heregulin and peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist in breast cancer cells. J Biol Chem. 2011;286(22):20087-20099. doi: 10.1074/jbc.M110.191718
- Higuchi T, Sugisawa N, Miyake K, et al. Pioglitazone, an agonist of PPAR-γ, reverses doxorubicin-resistance in an osteosarcoma patient-derived orthotopic xenograft model by downregulating P-glycoprotein expression. Biomed Pharmacother. 2019;118:109356. doi: 10.1016/j.biopha.2019.109356
- To KKW, Tomlinson B. Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPAR-γ agonists. Br J Pharmacol. 2013;170(5):1137-1151. doi: 10.1111/bph.12367
- Zhang H, Jing X, Wu X, et al. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anticancer Drugs. 2015;26(7):706-715. doi: 10.1097/CAD.0000000000000236
- Bräutigam K, Biernath-Wüpping J, Bauerschlag DO, et al. Combined treatment with TRAIL and PPAR-γ ligands overcomes chemoresistance of ovarian cancer cell lines. J Cancer Res Clin Oncol. 2011;137(5):875-886. doi: 10.1007/s00432-010-0952-2
- Vallée A, Lecarpentier Y, Vallée JN. Targeting the canonical WNT/β-catenin pathway in cancer treatment using non-steroidal anti-inflammatory drugs. Cells. 2019;8(7):726. doi: 10.3390/cells8070726
- Chen L, Bush CR, Necela BM, et al. RS5444, a novel PPARγ agonist, regulates aspects of the differentiated phenotype in nontransformed intestinal epithelial cells. Mol Cell Endocrinol. 2006;251:17-32. doi: 10.1016/j.mce.2006.02.006
- Smallridge RC, Copland JA, Brose MS, et al. Efatutazone, an oral PPAR-γ agonist, in combination with paclitaxel in anaplastic thyroid cancer: Results of a multicenter phase 1 trial. J Clin Endocrinol Metab. 2013;98(6):2392-2400. doi: 10.1210/jc.2013-1106
- Marlow LA, Reynolds LA, Cleland AS, et al. Reactivation of suppressed RhoB is a critical step for the inhibition of anaplastic thyroid cancer growth. Cancer Res. 2009;69(4):1536-1544. doi: 10.1158/0008-5472.CAN-08-3718
- Pishvaian MJ, Marshall JL, Wagner AJ, et al. A phase 1 study of efatutazone, an oral peroxisome proliferator‐activated receptor gamma agonist, administered to patients with advanced malignancies. Cancer. 2012;118(21):5403-5413. doi: 10.1002/cncr.27526
- Komatsu Y, Yoshino T, Yamazaki K, et al. Phase 1 study of efatutazone, a novel oral peroxisome proliferator-activated receptor gamma agonist, in combination with FOLFIRI as second-line therapy in patients with metastatic colorectal cancer. Invest New Drugs. 2014;32:473-480. doi: 10.1007/s10637-013-0056-3
- Hau P, Kunz-Schughart L, Bogdahn U, et al. Low-dose chemotherapy in combination with COX-2 inhibitors and PPAR-gamma agonists in recurrent high-grade gliomas-a phase II study. Oncology. 2008;73(1-2):21-25. doi: 10.1159/000120028
- Vogt T, Hafner C, Bross K, et al. Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer. 2003;98(10):2251-2256. doi: 10.1002/cncr.11775
- Reichle A, Bross K, Vogt T, et al. Pioglitazone and rofecoxib combined with angiostatically scheduled trofosfamide in the treatment of far‐advanced melanoma and soft tissue sarcoma. Cancer. 2004;101(10):2247-2256. doi: 10.1002/cncr.20574
- Bahrambeigi S, Molaparast M, Sohrabi F, et al. Targeting PPAR ligands as possible approaches for metabolic reprogramming of T cells in cancer immunotherapy. Immunol Lett. 2020;220:32-37. doi: 10.1016/j.imlet.2020.01.006
- Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med. 2015;212(7):1125. doi: 10.1084/jem.20142237
- Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568-571. doi: 10.1016/j.ejca.2023.03.040
- Zhang Y, Kurupati R, Liu L, et al. Enhancing CD8+ T cell fatty acid catabolism within a metabolically challenging tumor microenvironment increases the efficacy of melanoma immunotherapy. Cancer Cell. 2017;32(3):377-391. doi: 10.1016/j.ccell.2017.08.004
- Chowdhury PS, Chamoto K, Kumar A, Honjo T. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti–PD-1 therapy. Cancer Immunol Res. 2018;6(11):1375-1387. doi: 10.1158/2326-6066.CIR-18-0095
- Han J, Alvarez-Breckenridge CA, Wang QE, Yu J. TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res. 2015;5(3):945.
- Coras R, Holsken A, Seufert S, et al. The peroxisome proliferator-activated receptor-γ agonist troglitazone inhibits transforming growth factor-β–mediated glioma cell migration and brain invasion. Mol Cancer Ther. 2007;6(6):1745-1754. doi: 10.1158/1535-7163.MCT-06-0763
- Tran TT, Uhl M, Ma JY, et al. Inhibiting TGF-β signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol. 2007;9(3):259-270. doi: 10.1215/15228517-2007-010
- Papi A, De Carolis S, Bertoni S, et al. PPARγ and RXR ligands disrupt the inflammatory cross‐talk in the hypoxic breast cancer stem cells niche. J Cell Physiol. 2014;229(11):1595-1606. doi: 10.1002/jcp.24601
- Rovito D, Gionfriddo G, Barone I, et al. Ligand-activated PPARγ downregulates CXCR4 gene expression through a novel identified PPAR response element and inhibits breast cancer progression. Oncotarget. 2016;7(40):65109. doi: 10.18632/oncotarget.11371
- Wang N, Wang S, Wang X, et al. Research trends in pharmacological modulation of tumor‐associated macrophages. Clin Transl Med. 2021;11(1):e288. doi: 10.1002/ctm2.288
- Penas F, Mirkin GA, Vera M, et al. Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice. Biochim Biophys Acta. 2015;1852(5):893-904. doi: 10.1016/j.bbadis.2014.12.019
- Souza-Moreira L, Soares VC, Dias SD, Bozza PT. Adipose-derived mesenchymal stromal cells modulate lipid metabolism and lipid droplet biogenesis via AKT/mTOR– PPARγ signalling in macrophages. Sci Rep. 2019;9(1):20304. doi: 10.1038/s41598-019-56835-8
- Gionfriddo G, Plastina P, Augimeri G, et al. Modulating tumor-associated macrophage polarization by synthetic and natural PPARγ ligands as a potential target in breast cancer. Cells. 2020;9(1):174. doi: 10.3390/cells9010174
- Christofides A, Konstantinidou E, Jani C, Boussiotis VA. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338. doi: 10.1016/j.metabol.2020.154338
- Sun J, Yu L, Qu X, Huang T. The role of peroxisome proliferator-activated receptors in the tumor microenvironment, tumor cell metabolism, and anticancer therapy. Front Pharmacol. 2023;14:1184794. doi: 10.3389/fphar.2023.1184794
- Nayak A, Warrier NM, Kumar P. Cancer stem cells and the tumor microenvironment: Targeting the critical crosstalk through nanocarrier systems. Stem Cell Rev Rep. 2022;18(7):2209-2233. doi: 10.1007/s12015-022-10426-9
- Min JY, Kim DH. Stearoyl-CoA desaturase 1 as a therapeutic biomarker: Focusing on cancer stem cells. Int J Mol Sci. 2023;24(10):8951. doi: 10.3390/ijms24108951
- Ma XL, Sun YF, Wang BL, et al. Sphere-forming culture enriches liver cancer stem cells and reveals Stearoyl-CoA desaturase 1 as a potential therapeutic target. BMC Cancer. 2019;19:1-2. doi: 10.1186/s12885-019-5963-z
- Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: Glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16(10):619-634. doi: 10.1038/nrc.2016.114
- Hay N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16(10):635-649. doi: 10.1038/nrc.2016.77
- Luo X, Cheng C, Tan Z, et al. Emerging roles of lipid metabolism in cancer metastasis. Mol Cancer. 2017;16(1):76. doi: 10.1186/s12943-017-0646-3
- Vamecq J, Colet JM, Vanden Eynde JJ, Briand G, Porchet N, Rocchi S. PPARs: interference with Warburg’ effect and clinical anticancer trials. PPAR Res. 2012;2012(1):304760. doi: 10.1155/2012/304760
- Antonosante A, d’Angelo M, Castelli V, et al. The involvement of PPARs in the peculiar energetic metabolism of tumor cells. Int J Mol Sci. 2018;19(7):1907. doi: 10.3390/ijms19071907
- Shi Q, Zeng Y, Xue C, Chu Q, Yuan X, Li L. Development of a promising PPAR signaling pathway-related prognostic prediction model for hepatocellular carcinoma. Sci Rep. 2024 Feb 28;14(1):4926. doi: 10.1038/s41598-024-55086-6
- Zhang Y, Li X, Zhang J, et al. Development and validation of the promising PPAR signaling pathway‐based prognostic prediction model in uterine cervical cancer. PPAR Res. 2023;2023(1):4962460. doi: 10.1155/2023/4962460
- Wang H, Yang Y, Luo Q, et al. The PPAR signaling pathway as a potential biomarker for the diagnosis of breast cancer. Int J Clin Exp Med. 2019;12(6):7327-7336.