AccScience Publishing / TD / Volume 3 / Issue 4 / DOI: 10.36922/td.3987
ORIGINAL RESEARCH ARTICLE

A new immunomagnetic microfluidic device for characterizing EGFR mutations in circulating tumor cells from patients with non-small cell lung cancer

Nkeiruka O. Ogidi1,2 Michael J. Lind3 John Greenman1*
Show Less
1 Centre for Biomedicine, University of Hull, Kingston upon Hull, United Kingdom
2 Department of Medical Laboratory Sciences, College of Medicine, University of Lagos, Idi-araba, Lagos state, Nigeria
3 Centre for Clinical Sciences, University of Hull, Kingston upon Hull, United Kingdom
Tumor Discovery 2024, 3(4), 3987 https://doi.org/10.36922/td.3987
Submitted: 19 June 2024 | Accepted: 19 September 2024 | Published: 12 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Incorporating precision oncology into cancer management has begun to improve clinical outcomes. Accurate sampling techniques that detect molecular aberrations are crucial for effective implementation. Circulating tumor cells (CTCs), derived from primary or metastatic sites and present in the blood, are proposed as useful diagnostic tools, though their use has been limited due to their rarity, especially in early-stage cancers. This study presents a novel immunomagnetic microfluidic device that efficiently isolates CTCs for analyzing epidermal growth factor receptor (EGFR) mutations in patients with non-small cell lung cancer (NSCLC). The device was designed and laser-cut from polymethylmethacrylate. Validation experiments involved spiking PC-9 cells (an established lung cancer cell line containing GLU 746-ALA 750 deletion mutations in exon 19 of the EGFR gene) into media and isolating these cells. Exons 18 – 21 of EGFR were amplified using a polymerase chain reaction to demonstrate the device’s rapid mutation detection capability. Next-generation sequencing was used to characterize these exons in a cohort of 38 NSCLC patients, successfully isolating CTCs from all. Among these patients, 30 (79%) had EGFR mutations, with exon 19 showing the highest mutation rate (87%) and exon 21 the highest point mutation rate (23%). Our device captured CTCs effectively in <1 h, enabling mutation detection. Further studies are needed to assess the prognostic significance of these mutations, but this technology has potential applications in various solid tumors.

Graphical abstract
Keywords
Precision oncology
CTC
NSCLC
EGFR
Microfluidics
Immunomagnetic
Funding
The travel and consumable costs related to this work were supported by the EU/Marie Curie Lung Card project (No. 734790) and Yorkshire Cancer Research (H395).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Rajadurai P, Yap NY, Mohamed Yousoof SB, Cheah YK. Mutational profiling of lung cancer using next generation sequencing: A Malaysian real-world clinical diagnostic experience. J Mol Pathol. 2023;4(1):31-43. doi: 10.3390/jmp4010004

 

  1. Petrelli F, Borgonovo K, Cabiddu M, Barni S. Efficacy of EGFR tyrosine kinase inhibitors in patients with EGFR-mutated non-small-cell lung cancer: A meta-analysis of 13 randomized trials. Clin Lung Cancer. 2012;13(2):107-114. doi: 10.1016/j.cllc.2011.08.005

 

  1. Petrella F, Rizzo S, Attili I, et al. Stage III non-small-cell lung cancer: An overview of treatment options. Curr Oncol. 2023;30(3):3160-3175. doi: 10.3390/curroncol30030239

 

  1. Robichaux JP, Le X, Vijayan RSK, et al. Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature. 2021;597(7878):732-737. doi: 10.1038/s41586-021-03898-1

 

  1. Sasaki A, Fujimoto Y., Inada T, et al. Efficacy of tyrosine kinase inhibitors in patients with non-small-cell lung cancer with performance status 4: A case series and review of the literature. J Med Case Rep. 202;17(1):410. doi: 10.1186/s13256-023-04145-z

 

  1. Russo A, Franchina T, Ricciardi G, Picciotto M, Adamo V. Heterogeneous responses to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with uncommon EGFR mutations: New insights and future perspectives in this complex clinical scenario. Int J Mol Sci. 2019;20:1431. doi: 10.3390/ijms20061431

 

  1. Janne P, Wang X, Sociniski M, et al. Randomized phase II trial of erlotinib alone or with carboplatin and paclitaxel in patients who were never or light former smokers with advanced lung adenocarcinoma. CALGB30406 trial. J Clin Oncol. 2012;30(17):2063-2069. doi: 10.1200/JCO.2011.40.1315

 

  1. Wu YL, Zhou C, Liam CK, et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: Analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol. 2015;26:1883-1889. doi: 10.1093/annonc/mdv270

 

  1. Yang JC, Wu YL, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomized, phase 3 trials. Lancet Oncol. 2015;16(2):141-151. doi: 10.1016/S1470-2045(14)71173-8

 

  1. Costa DB. Kinase inhibitor-responsive genotypes in EGFR mutated lung adenocarcinomas: Moving past common point mutations or indels into uncommon kinase domain duplications and rearrangements. Transl Lung Cancer Res. 2016;5:331-337. doi: 10.21037/tlcr.2016.06.04

 

  1. Xu H, Yang G, Li W, et al. EGFR exon 18 mutations in advanced non-small cell lung cancer: A real-world study on diverse treatment patterns and clinical outcomes. Front Oncol. 2021;11:713483. doi: 10.3389/fonc.2021.713483

 

  1. Rossi S, D’Argento E, Basso M, et al. Different EGFR gene mutations in exon 18, 19 and 21 as prognostic and predictive markers in NSCLC: A single institution analysis. Mol Diagn Ther. 2016;20(1):55-63. doi: 10.1007/s40291-015-0176-x

 

  1. Klughammer B, Brugger W, Cappuzzo F, et al. Examining treatment outcomes with erlotinib in patients with advanced non-small cell lung cancer whose tumors harbor uncommon EGFR mutations. J Thorac Oncol. 2016;11:545-555. doi: 10.1016/j.jtho.2015.12.107

 

  1. Zhang T, Wan B, Zhao Y, et al. Treatment of uncommon EGFR mutations in non-small cell lung cancer: New evidence and treatment. Transl Lung Cancer Res. 2019;8(3):302-316. doi: 10.21037/tlcr.2019.04.12

 

  1. Brindel A, Althakafi W, Barritault M, et al. Uncommon EGFR mutations in lung adenocarcinoma: Features and response to tyrosine kinase inhibitors. Transl Lung Cancer Res. 2020;12(9):4643-4650. doi: 10.21037/jtd-19-3790

 

  1. Byeon S, Kim Y, Lim SW, et al. Clinical outcomes of EGFR exon 20 insertion mutations in advanced non-small cell lung cancer in Korea. Cancer Res Treat. 2019;51(2):623-631. doi: 10.4143/crt.2018.151

 

  1. Ou SI, Lin HM, Hong JL, et al. Real-world response and outcomes in patients with NSCLC with EGFR exon 20 insertion mutations. JTO Clin Res Rep. 2023;4(10):100558. doi: 10.1016/j.jtocrr.2023.100558

 

  1. Vaclova T, Grazini U, Ward L, et al. Clinical impact of subclonal EGFR T790M mutations in advanced-stage EGFR-mutant non-small-cell lung cancers. Nat Commun. 2021;12:1780. doi: 10.1038/s41467-021-22057-8

 

  1. Bencze E, Bogos K, Kohánka A, et al. EGFR T790M mutation detection in patients with non-small cell lung cancer after first line EGFR TKI therapy: Summary of results in a three-year period and a comparison of commercially available detection kits. Pathol Oncol Res. 2022;28:1610607. doi: 10.3389/pore.2022.1610607

 

  1. Zhao Z, Li L, Wang Z, Duan J, Bai H, Wang J. The status of the EGFR T790M mutation is associated with the clinical benefits of osimertinib treatment in non-small cell lung cancer patients: A meta-analysis. J Cancer. 2020;11(11):3106-3113. doi: 10.7150/jca.38411

 

  1. Araki T, Kanda S, Horinouchi H, Ohe Y. Current treatment strategies for EGFR-mutated non-small cell lung cancer: From first line to beyond osimertinib resistance. Jpn J Clin Oncol. 2023;53(7):547-561. doi: 10.1093/jjco/hyad052

 

  1. Attili I, Passaro A, Pisapia P, Malapelle U, de Marinis F. Uncommon EGFR compound mutations in non-small cell lung cancer (NSCLC): A systematic review of available evidence. Curr Oncol. 2022;29(1):255-266. doi: 10.3390/curroncol29010024

 

  1. Kalemkerian GP, Narula N, Kennedy EB, et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology Clinical Practice Guideline Update. J Clin Oncol. 2018;36:911-919. doi: 10.1200/JCO.2017.76.7293

 

  1. Ettinger DS, Aisner DL, Wood DE, et al. NCCN guidelinesinsights: Non-small cell lung cancer. J Natl Compr Canc Netw. 2023;21(4):340-350. doi: 10.6004/jnccn.2023.0020

 

  1. Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142:321-346. doi: 10.5858/arpa.2017-0388-CP

 

  1. Martins I, Ribeiro IP, Jorge J, et al. Liquid biopsies: Applications for cancer diagnosis and monitoring. Genes (Basel). 2021;12(3):349. doi: 10.3390/genes12030349

 

  1. Kim MH, Kim SH, Lee MK, Eom JS. Recent advances in adjuvant therapy for non-small-cell lung cancer. Tuberc Respir Dis (Seoul). 2024;87(1):31-39. doi: 10.4046/trd.2023.0085

 

  1. Malapelle U, Muscarella LA, Pisapia P, Rossi A. Targeting emerging molecular alterations in the treatment of non-small cell lung cancer: Current challenges and the way forward. Expert Opin Investig Drugs. 2020;29(4):363-372. doi: 10.1080/13543784.2020.1732922

 

  1. Jamal-Hanjani M, Wilson GA, McGranahan N, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109-2121. doi: 10.1056/NEJMoa1616288

 

  1. Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40(6):611-625. doi: 10.1200/JCO.21.01626

 

  1. Thress KS, Brant R, Carr TH, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: A cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer. 2015;90(3):509-515. doi: 10.1016/j.lungcan.2015.10.004

 

  1. Roldan Ruiz J, Fuentes Gago MG, Chinchilla Tabora LM, et al. The impact of liquid biopsies positive for EGFR mutations on overall survival in non-small cell lung cancer patients. Diagnostics (Basel). 2023;13(14):2347. doi: 10.3390/diagnostics13142347

 

  1. Rossi E, Aieta M, Tartarone A, et al. A fully automated assay to detect the expression of pan-cytokeratins and of EML4- ALK fusion protein in circulating tumour cells (CTCs) predicts outcome of non-small cell lung cancer (NSCLC) patients. Transl Lung Cancer Res. 2021;10(1):80-92. doi: 10.21037/tlcr-20-855

 

  1. Nguyen TNA, Huang PS, Chu PY, Hseih CH, Wu MH. Recent progress in enhanced cancer diagnosis, prognosis, and monitoring using a combined analysis of the number of Circulating Tumor Cells (CTCs) and other clinical parameters. Cancers (Basel). 2023;15(22):5372. doi: 10.3390/cancers15225372

 

  1. Lawrence R, Watters M, Davies CR, Pantel K, Lu YJ. Circulating tumour cells for early detection of clinically relevant cancer. Nat Rev Clin Oncol. 2023;20(7):487-500. doi: 10.1038/s41571-023-00781-y

 

  1. Auwal A, Matakabbir Hassan M, Haque Prony TU, et al. Clinical significance of genomic sequencing of Circulating Tumour Cells (CTCs) in cancer. J Liq Biopsy. 2024;3:100135. doi: 10.1016/j.jlb;2023.100135

 

  1. Punnoose E, Atwal S, Liu W, et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: Association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res. 2012;18(8):2391-2401. doi: 10.1158/1078-0432.CCR-11-3148

 

  1. Sunderesan TK, Sequist LV, Haymach JV, et al. Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res. 2016;22(5):1103-1110. doi: 10.1158/1078-0432ccr-15-1031

 

  1. Keup C, Kimmig, R,Kasimir-Bauer S. Multimodality in liquid biopsy: Does a combination uncover insights undetectable in individual blood analytes? J Lab Med. 2022;46(4):255-264. doi: 10.1515/labmed-2022-0009

 

  1. Nagrath S, Sequist L, Maheswaran S, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 2007;450(7173):1235-1239. doi: 10.1038/nature06385

 

  1. Rushton A, Nteliopoulos G, Shaw J, Coombes RS. A review of circulating tumour cell enrichment technologies. Cancers (Basel). 2021;13(5):970. doi: 10.3390/cancers13050970

 

  1. Habili Z, Al chama W, Saab R, Kadara H, Kharaiche ML. Circulatory tumour cell detection technologies and clinical utility: Challenges and opportunities. Cancers (Basel). 2020;12(7):1930. doi: 10.3390/cancers12071930

 

  1. Ring A, Nguyen-Sträuli BD, Wicki A, Aceto N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat Rev Cancer. 2023;23:95-111. doi: 10.1038/s41568-022-00536-4

 

  1. Tran HH, Wu W, Lee NY. Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility. Sens Actuators B Chem. 2013;181:955-962. doi: 10.1016/j.snb.2012.11.060

 

  1. Tsuji K, Hayata Y. Riken Cell Bank; 1989. Available from: https://www.cellbank.brc@rike.jp/rcb4455.pc9 [Last accessed on 2024 May 22].

 

  1. Maheswaran S, Sequist LV, Nagrath S, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366-377. doi: 10.1056/NEJMoa0800668

 

  1. Ju S, Chen C, Zhang J, et al. Detection of circulating tumor cells: Opportunities and challenges. Biomark Res. 2022;10(1):58. doi: 10.1186/s40364-022-00403-2

 

  1. Zhang YL, Yuan JQ, Wang KF, et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: A systematic review and meta-analysis. Oncotarget. 2016;7(48):78985-78993. doi: 10.18632/oncotarget.12587

 

  1. Graham RP, Treece AL, Lindeman NI, et al. Worldwide frequency of commonly detected EGFR mutations. Arch Pathol Lab Med. 2018;142(2):163-167. doi: 10.5858/arpa.2016-0579-cp

 

  1. Alix-Panabières C, Pantel K. Liquid biopsy: From discovery to clinical implementation. Mol Oncol. 2021;15(6):1617-1621. doi: 10.1002/1878-0261.12997

 

  1. Midha A, Dearden S, McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: A systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 2015;5(9):2892-2911.

 

  1. Mao L, Zhao W, Li X, et al. Mutation spectrum of EGFR from 21,324 Chinese patients with non-small cell lung cancer (NSCLC) successfully tested by multiple methods in a CAP-accredited laboratory. Pathol Oncol Res. 2021;27:602726. doi: 10.3389/pore.2021.602726

 

  1. Petrackova A, Vasinek M, Sedlarikova L, et al. Standardization of sequencing coverage depth in NGS: Recommendation for detection of clonal and subclonal mutations in cancer diagnostics. Front Oncol. 2019;9:851. doi: 10.3389/fonc.2019.00851

 

  1. Singh RR. Next-generation sequencing in high-sensitive detection of mutations in tumours: Challenges, advances, and applications. J Mol Diagn. 2020;22(8):994-1007. doi: 10.1016/j.jmoldx.2020.04.213

 

  1. Jennings LJ, Arcila ME, Corless C, et al. Guidelines for validation of next-generation sequencing-based oncology panels: A joint consensus recommendation of the association for molecular pathology and college of American Pathologist. J Mol Diagn. 2017;19(3):341-365. doi: 10.1016/j.jmoldx.2017.01.011

 

  1. Heitzer E, Auer M, Gasch C, et al. Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res. 2013;73(10):2965-2975. doi: 10.1158/0008-5472.CAN-12-4140

 

  1. Evans M, O’Sullivan B, Smith M, et al. Large-scale EGFR mutation testing in clinical practice: Analysis of a series of 18,920 Non-small cell lung cancer cases. Pathol Oncol Res. 2019;25(4):1401-1409. doi: 10.1007/s12253-018-0460-2

 

  1. Martin J, Lehmann A, Klauschen F, et al. Clinical impact of rare and compound mutations of epidermal growth factor receptor in patients with non-small-cell lung cancer. Clin Lung Cancer. 2019;20(5):350-362.e4. doi: 10.1016/j.cllc.2019.04.012

 

  1. Marchetti A, Del Grammastro M, Felicioni L, et al. Assessment of EGFR mutations in circulating tumor cell preparations from NSCLC patients by next generation sequencing: Toward a real-time liquid biopsy for treatment. PLoS One. 2014;9(8):e103883. doi: 10.1371/journal.pone.0103883

 

  1. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129-2139. doi: 10.1056/NEJMoa040938

 

  1. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer - molecular and clinical predictors of outcome. N Engl J Med. 2005;353(2):133-144. doi: 10.1056/NEJMoa050736

 

  1. González Manzano R, Martínez Navarro E, Eugenieva E, Fernandez Morejon FJ, Farre J, Brugaralos A. A novel EGFR nonsense mutation in a non-small-cell lung cancer (NSCLC) patient who did not derive any clinical benefit with combination chemotherapy and erlotinib. Clin Transl Oncol. 2008;10(7):442-444. doi: 10.1007/s12094-008-0229-2

 

  1. Fu M, Zhang W, Shan L, et al. Mutation status of somatic EGFR and KRAS genes in Chinese patients with prostate cancer (PCa). Virchows Arch. 2014;464(5):575-581. doi: 10.1007/s00428-014-1566-x

 

  1. Kim H, Kim BH, Lee D, Shin E. Genomic alterations in signet ring and mucinous patterned colorectal carcinoma. Pathol Res Pract. 2019;215(10):152566. doi: 10.1016/j.prp.2019.152566

 

  1. Tanaka Y, Terai Y, Tanabe A, et al. Prognostic effect of epidermal growth factor receptor gene mutations and the aberrant phosphorylation of Akt and ERK in ovarian cancer. Cancer Biol Ther. 2011;11(1):50-57. doi: 10.4161/cbt.11.1.13877

 

  1. Zhang Q, Nong J, Wang J, et al. Isolation of circulatory tumour cells and detection of EGFR mutations in patients with non-small-cell lung cancer. Oncol Lett. 2019;17(4):3799-3807. doi: 10.3892/ol.2019.10016

 

  1. Ntzifa A, Kotsakis A, Georgoulias V, Lianidou E. Detection of EGFR mutations in plasma cfDNA and paired CTCs of NSCLC patients before and after osimertinib therapy using crystal digital PCR. Cancers (Basel). 2021;13(11):2736. doi: 10.3390/cancers 13112736
Share
Back to top
Tumor Discovery, Electronic ISSN: 2810-9775 Print ISSN: 3060-8597, Published by AccScience Publishing