AccScience Publishing / MSAM / Volume 5 / Issue 1 / DOI: 10.36922/MSAM025290063
REVIEW ARTICLE

Influence of porous structures on the degradation behavior of additively manufactured magnesium and magnesium alloy orthopedic implants

Haoxuan Zeng1 Huiwen Huang1,2* Qiao Li2* Chunli Song3,4,5 Lizhen Wang1,2 Yubo Fan1,2
Show Less
1 Medical Engineering and Engineering Medicine Innovation Center, Hangzhou International Innovation Institute, Beihang University, Hangzhou, Zhejiang, China
2 Key Laboratory of Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
3 Department of Orthopedics, Peking University Third Hospital, Beijing, China
4 Beijing Key Laboratory of Spinal Diseases, Department of Orthopedics, Peking University Third Hospital, Beijing, China
5 Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Peking University Third Hospital, Beijing, China
MSAM 2026, 5(1), 025290063 https://doi.org/10.36922/MSAM025290063
Received: 15 July 2025 | Accepted: 12 August 2025 | Published online: 7 October 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The escalating incidence of bone defects has prompted a substantial demand for orthopedic implants, and additively manufactured biodegradable porous magnesium and magnesium alloy orthopedic implants have demonstrated significant potential for clinical applications. However, the mismatch between degradation-induced changes in mechanical properties and tissue regeneration remains a major challenge hindering their applications. As porous structure is a critical factor influencing the degradation behavior of magnesium/magnesium alloy orthopedic implants, this study aims to comprehensively review the current state of research in this area. The degradation behavior of magnesium/magnesium alloy orthopedic implants has been investigated using both experimental and numerical simulation methods. Degradation experiments have enabled direct observations of the influences of structures on degradation behavior and underlying mechanisms. Numerical simulations have been employed to analyze the stress and strain distributions within the structure during degradation and surrounding tissue regeneration, facilitating the investigation of the “structure-stress-tissue regeneration” regulation on degradation. Porous structures play critical roles in regulating mechanical properties, bearing physiological loads, and establishing a localized mechanical microenvironment of magnesium/magnesium alloy orthopedic implants. Design variables, including porosity, specific surface area, pore size, shape, and interconnectivity, influence the macroscopic mechanical properties, structural deformation, stress distribution, and contact with surrounding tissues, thereby regulating degradation behavior and tissue regeneration of implants. However, models that quantitatively describe the “porous structural variables-degradation-tissue regeneration” interaction remain to be developed. This study systematically summarizes the influences of porous structures on the degradation behavior of additively manufactured magnesium/ magnesium alloy orthopedic implants and the “structure-mechanics-degradation-biology” interaction mechanisms. This review provides a systematic understanding of the state-of-the-art research and future directions to guide the development and applications of orthopedic implants.

Graphical abstract
Keywords
Magnesium alloy
Porous orthopedic implants
Microstructures
Degradation behavior
Tissue regeneration
Funding
This work was supported by the National Natural Science Foundation of China (Nos. 12425209, 12402351, 12332019, 12172043), the Beijing Municipal Natural Science Foundation (No. L241067), and the Research Funding of Hangzhou International Innovation Institute of Beihang University (No. 2024KQ108).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Hu X, Lin Z, He J, et al. Recent progress in 3D printing degradable polylactic acid‐based bone repair scaffold for the application of cancellous bone defect. MedComm. 2022;1(1):e14. doi: 10.1002/mba2.14
  2. Habibovic P. Strategic directions in osteoinduction and biomimetics. Tissue Eng. 2017;23(23-24):1295-1296. doi: 10.1089/ten.tea.2017.0430
  3. Yang Y, He C, Yang W, et al. Mg bone implant: Features, developments and perspectives. Mater Des. 2020;185:108259. doi: 10.1016/j.matdes.2019.108259
  4. Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater. 2017;2(4):224-247. doi: 10.1016/j.bioactmat.2017.05.007
  5. Block MS, Kent JN. Sinus augmentation for dental implants: The use of autogenous bone. J Oral Maxillofac Surg. 1997;55(11):1281-1286. doi: 10.1016/S0278-2391(97)90185-3
  6. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent. 2017;3:1-17. doi: 10.1186/s40729-017-0084-4
  7. Younger EM, Chapman MW. Morbidity at bone graft donor sites. J Orthop Trauma. 1989;3(3):192-195. doi: 10.1097/00005131-198909000-00002
  8. Robinson PG, Abrams GD, Sherman SL, Safran MR, Murray IR. Autologous bone grafting. Oper Techn Sport Med. 2020;28(4):150780. doi: 10.1016/j.otsm.2020.150780
  9. Sumner DR, Galante JO. Determinants of stress shielding: Design versus materials versus interface.Clin Orthop Relat Res. 1992;274:202-212.
  10. Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992;274:124-134.
  11. Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C. Aseptic loosening, not only a question of wear: A review of different theories. Acta Orthop. 2006;77(2):177- 197. doi: 10.1080/17453670610045902
  12. Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG. Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Biomaterials. 1996;17(2):175-185. doi: 10.1016/0142-9612(96)85762-0
  13. Roshan-Ghias A, Lambers FM, Gholam-Rezaee M, Müller R, Pioletti DP. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates. Bone. 2011;49(6):1357-1364. doi: 10.1016/j.bone.2011.09.040
  14. Kroeze RJ, Helder MN, Govaert LE, Smit TH. Biodegradable polymers in bone tissue engineering. Materials. 2009;2(3):833-856. doi: 10.3390/ma2030833
  15. Giarmatzis G, Jonkers I, Wesseling M, Van Rossom S, Verschueren S. Loading of hip measured by hip contact forces at different speeds of walking and running. J Bone Miner Res. 2015;30(8):1431-1440. doi: 10.1002/jbmr.2483
  16. Hart NH, Newton RU, Tan J, et al. Biological basis of bone strength: Anatomy, physiology and measurement. J Musculoskelet Neuronal Interact. 2020;20(3):347-371.
  17. Bakhtiari H, Nouri A, Khakbiz M, Tolouei-Rad M. Fatigue behaviour of load-bearing polymeric bone scaffolds: A review. Acta Biomater. 2023;172:16-37. doi: 10.1016/j.actbio.2023.09.048
  18. Bandyopadhyay A, Mitra I, Goodman SB, Kumar M, Bose S. Improving biocompatibility for next generation of metallic implants. Prog Mater Sci. 2023;133:101053. doi: 10.1016/j.pmatsci.2022.101053
  19. Lee BH, Lee C, Kim DG, Choi K, Lee KH, Do Kim Y. Effect of surface structure on biomechanical properties and osseointegration. Mater Sci Eng C. 2008;28(8):1448-1461. doi: 10.1016/j.msec.2008.03.015
  20. Shah FA, Thomsen P, Palmquist A. Osseointegration and current interpretations of the bone-implant interface. Acta Biomater. 2019;84:1-15. doi: 10.1016/j.actbio.2018.11.018
  21. Heary RF, Parvathreddy N, Sampath S, Agarwal N. Elastic modulus in the selection of interbody implants. J Spine Surg. 2017;3(2):163. doi: 10.21037/jss.2017.05.01
  22. Yang W, Chen H, Bai H, et al. Additive manufactured osseointegrated screws with hierarchical design. Bio-Des Manuf. 2024;7(2):206-235. doi: 10.1007/s42242-024-00269-3
  23. Agarwal R, Gupta V, Singh J. Additive manufacturing-based design approaches and challenges for orthopaedic bone screws: A state-of-the-art review. J Braz Soc Mech Sci Eng. 2022;44(1):37. doi: 10.1007/s40430-021-03331-8
  24. Wang X, Xu S, Zhou S, et al. Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials. 2016;83:127- 141. doi: 10.1016/j.biomaterials.2016.01.012
  25. Zhang J, Shen Y, Sun Y, et al. Design and mechanical testing of porous lattice structure with independent adjustment of pore size and porosity for bone implant. J Mater Res Technol. 2022;18:3240-3255. doi: 10.1016/j.jmrt.2022.04.002
  26. Mandal S, Das V, Debata M, et al. Study of pore morphology, microstructure, and cell adhesion behaviour in porous Ti-6Al-4V scaffolds. Emergent Mater. 2019;2:453-462. doi: 10.1007/s42247-019-00055-3
  27. Zhang Z, Jones D, Yue S, et al. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. Mater Sci Eng C. 2013;33(7):4055-4062. doi: 10.1016/j.msec.2013.05.050
  28. Chua C. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7:679-689. doi: 10.1089/107632701753337645
  29. Zhang Q, Zhou J, Zhi P, et al. 3D printing method for bone tissue engineering scaffold. Med Novel Technol Devices. 2023;17:100205. doi: 10.1016/j.medntd.2022.100205
  30. Ansari N, Alabtah FG, Albakri MI, Khraisheh M. Post processing of additive manufactured Mg alloys: Current status, challenges, and opportunities. J Magnesium Alloys. 2024;12(4):1283-1310. doi: 10.1016/j.jma.2024.04.017
  31. Guddati S, Kiran ASK, Leavy M, Ramakrishna S. Recent advancements in additive manufacturing technologies for porous material applications. Int J Adv Manuf Tech. 2019;105(1):193-215. doi: 10.1007/s00170-019-04116-z
  32. Prakash KS, Nancharaih T, Rao VS. Additive manufacturing techniques in manufacturing-an overview. Mater Today Proc. 2018;5(2):3873-3882. doi: 10.1016/j.matpr.2017.11.642
  33. Nahlieli O. Complications of sialendoscopy: Personal experience, literature analysis, and suggestions. J Oral Maxillofac Surg. 2015;73(1):75-80. doi: 10.1016/j.joms.2014.07.028
  34. Chen Y, Li W, Zhang C, Wu Z, Liu J. Recent developments of biomaterials for additive manufacturing of bone scaffolds. Adv Healthcare Mater. 2020;9(23): e2000724. doi: 10.1002/adhm.202000724
  35. Germaini MM, Belhabib S, Guessasma S, Deterre R, Corre P, Weiss P. Additive manufacturing of biomaterials for bone tissue engineering-A critical review of the state of the art and new concepts. Prog Mater Sci. 2022;130:100963. doi: 10.1016/j.pmatsci.2022.100963
  36. Cockerill I, Su Y, Sinha S, et al. Porous zinc scaffolds for bone tissue engineering applications: A novel additive manufacturing and casting approach. Mater Sci Eng C. 2020;110:110738. doi: 10.1016/j.msec.2020.110738
  37. Gartzke AK, Julmi S, Klose C, et al. A simulation model for the degradation of magnesium-based bone implants. J Mech Behav Biomed Mater. 2020;101:103411. doi: 10.1016/j.jmbbm.2019.103411
  38. Nasr Azadani M, Zahedi A, Bowoto OK, Oladapo BI. A review of current challenges and prospects of magnesium and its alloy for bone implant applications. Prog Biomater. 2022;11(1):1-26. doi: 10.1007/s40204-022-00182-x
  39. Cheng A, Schwartz Z, Kahn A, et al. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng Part B Rev. 2019;25(1):14-29. doi: 10.1089/ten.teb.2018.0119
  40. Garimella A, Ghosh SB, Bandyopadhyay-Ghosh S. A comprehensive study of the impact on the microstructure and corrosion behavior of magnesium alloy-based porous bone implants. Mater Today Proc. 2023;9(3):1249-1282. doi: 10.1016/j.matpr.2023.04.027
  41. Zhao D, Yu K, Sun T, et al. Material-structure-function integrated additive manufacturing of degradable metallic bone implants for load‐bearing applications. Adv Funct Mater. 2023;33(16):2213128. doi: 10.1002/adfm.202213128
  42. Parai R, Bandyopadhyay-Ghosh S. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration. J Mech Behav Biomed Mater. 2019;96:45-52. doi: 10.1016/j.jmbbm.2019.04.019
  43. Sarian MN, Iqbal N, Sotoudehbagha P, et al. Potential bioactive coating system for high-performance absorbable magnesium bone implants. Bioact Mater. 2022;12:42-63. doi: 10.1016/j.bioactmat.2021.10.034
  44. Krämer M, Schilling M, Eifler R, et al. Corrosion behavior, biocompatibility and biomechanical stability of a prototype magnesium-based biodegradable intramedullary nailing system. Mater Sci Eng C Mater Biol Appl. 2016;59:129-135. doi: 10.1016/j.msec.2015.10.006
  45. Ghazizadeh E, Jabbari A, Sedighi M. In vitro corrosion-fatigue behavior of biodegradable Mg/HA composite in simulated body fluid. J Magnesium Alloys. 2021;9(6):2169-2184. doi: 10.1016/j.jma.2021.03.027
  46. Jing X, Ding Q, Wu Q, et al. Magnesium-based materials in orthopaedics: Material properties and animal models. Biomater Transl. 2021;2(3):197-213. doi: 10.12336/biomatertransl.2021.03.004
  47. Saad APM, Syahrom A. Study of dynamic degradation behaviour of porous magnesium under physiological environment of human cancellous bone. Corros Sci. 2018;131:45-56. doi: 10.1016/j.corsci.2017.10.026
  48. Peng B, Xu H, Song F, Wen P, Tian Y, Zheng Y. Additive manufacturing of porous magnesium alloys for biodegradable orthopedic implants: Process, design, and modification. J Mater Sci Technol. 2024;182:79-110. doi: 10.1016/j.jmst.2023.08.072
  49. Bielik M, Neubauer E, Kitzmantel M, Neubauer I, Kozeschnik E. Numerical simulation and experimental characterization of a single-seam plasma wire arc additive manufacturing process for Ti-6Al-4V. Mater Sci Addit Manuf. 2025;4(3):025140021. doi: 10.36922/MSAM025140021
  50. Shahed KS, Groeneveld-Meijer W, Lear M, Schreiber J, Manogharan G. Powder spreading behavior of bimodal ceramics in the binder jetting process. Mater Sci Addit Manuf. 2025;4(2):025110016. doi: 10.36922/MSAM025110016
  51. Chen J, Chen B. Progress in additive manufacturing of magnesium alloys: A review. Materials. 2024;17(15):3851. doi: 10.3390/ma17153851
  52. Zaitceva M, Borisov A, Popovich A, Sufiiarov V. Selective laser melting of ferritic/martensitic oxide dispersion-strengthened steel: Processing, microstructure, and mechanical properties. Mater Sci Addit Manuf. 2025;4(1):025060004. doi: 10.36922/MSAM025060004
  53. Li X, Fang X, Zhang M, Wang B, Huang K. Enhanced strength-ductility synergy of magnesium alloy fabricated by ultrasound assisted directed energy deposition. J Mater Sci Technol. 2024;178:247-261. doi: 10.1016/j.jmst.2023.09.021
  54. Cheng S, Liu F, Xu Y, et al. Effects of arc oscillation on microstructure and mechanical properties of AZ31 magnesium alloy prepared by CMT wire-arc directed energy deposition. Mater Sci Eng A. 2023;864:144539. doi: 10.1016/j.msea.2022.144539
  55. Gieseke M, Noelke C, Kaierle S, Wesling V, Haferkamp H. Selective laser melting of magnesium and magnesium alloys. Magnes Technol. 2013:65-68. doi: 10.1007/978-3-319-48150-0_11
  56. Prashanth KG, Scudino S, Klauss HJ, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng A. 2014;590:153-160. doi: 10.1016/j.msea.2013.10.023
  57. Allavikutty R, Gupta P, Santra TS, Rengaswamy J. Additive manufacturing of Mg alloys for biomedical applications: Current status and challenges. Curr Opin Biomed Eng. 2021;18:100276. doi: 10.1016/j.cobme.2021.100276
  58. Gao C, Wang C, Jin H, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv. 2018;8(44):25210-25227. doi: 10.1039/c8ra04815k
  59. Dong J, Li Y, Lin P, et al. Solvent-cast 3D printing of magnesium scaffolds. Acta Biomater. 2020;114:497-514. doi: 10.1016/j.actbio.2020.08.002
  60. Takagi H, Sasahara H, Abe T, et al. Material-property evaluation of magnesium alloys fabricated using wire-and-arc-based additive manufacturing. Addit Manuf. 2018;24:498-507. doi: 10.1016/j.addma.2018.10.026
  61. Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP. Additive manufacturing of magnesium alloys. Bioact Mater. 2020;5(1):44-54. doi: 10.1016/j.bioactmat.2019.12.004
  62. Manjhi SK, Sekar P, Bontha S, Balan A. Additive manufacturing of magnesium alloys: Characterization and post-processing. Int J Lightweight Mater Manuf. 2024;7(1):184-213. doi: 10.1016/j.ijlmm.2023.06.004
  63. Kleger N, Cihova M, Masania K, Studart AR, Löffler JF. 3D printing of salt as a template for magnesium with structured porosity. Adv Mater. 2019;31(37):1903783. doi: 10.1002/adma.201903783
  64. Wolff M, Mesterknecht T, Bals A, Ebel T, Willumeit- Römer R. FFF of Mg-alloys for biomedical application. Magnes Technol. 2019:43-49. doi: 10.1007/978-3-030-05789-3_8
  65. Farag M, Yun HS. Effect of gelatin addition on fabrication of magnesium phosphate-based scaffolds prepared by additive manufacturing system. Mater Lett. 2014;132:111-115. doi: 10.1016/j.matlet.2014.06.055
  66. Wei D, Anniyaer A, Koizumi Y, et al. On microstructural homogenization and mechanical properties optimization of biomedical Co-Cr-Mo alloy additively manufactured by using electron beam melting. Addit Manuf. 2019;28:215-227. doi: 10.1016/j.addma.2019.05.010
  67. Badkoobeh F, Mostaan H, Rafiei M, Bakhsheshi-Rad HR, RamaKrishna S, Chen X. Additive manufacturing of biodegradable magnesium-based materials: Design strategies, properties, and biomedical applications. J Magnesium Alloys. 2023;11(3):801-839. doi: 10.1016/j.jma.2022.12.001
  68. Zhang WN, Wang LZ, Feng ZX, Chen YM. Research progress on selective laser melting (SLM) of magnesium alloys: A review. Optik. 2020;207:163842. doi: 10.1016/j.ijleo.2019.163842
  69. Zumdick NA, Jauer L, Kersting LC, Kutz TN, Schleifenbaum JH, Zander D. Additive manufactured WE43 magnesium: A comparative study of the microstructure and mechanical properties with those of powder extruded and as-cast WE43. Mater Charact. 2019;147:384-397. doi: 10.1016/j.matchar.2018.11.011
  70. Guo Y, Quan G, Jiang Y, Ren L, Fan L, Pan H. Formability, microstructure evolution and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy using gas tungsten arc welding. J Magnesium Alloys. 2021;9(1):192-201. doi: 10.1016/j.jma.2020.01.003
  71. Juan C. Microstructure and mechanical properties of high strength Mg-15Gd-1Zn-0.4 Zr alloy additive-manufactured by selective laser melting process. T Nonferr Metal Soc. 2021;31(7):1969-1978. doi: 10.1016/S1003-6326(21)65630-3
  72. Zhang XL, Zhang ZT. Influence of sub-rapid solidification on microstructure and mechanical properties of AZ61A magnesium alloy. T Nonferr Metal Soc. 2008;18:S86-S90. doi: 10.1016/s1003-6326(10)60180-x
  73. Kokubo T, Ito S, Shigematsu M, Sanka S, Yamamuro T. Fatigue and life-time of bioactive glass-ceramic AW containing apatite and wollastonite. J Mater Sci. 1987;22:4067-4070. doi: 10.1007/BF01133359
  74. Dutta S, Devi KB, Roy M. Processing and degradation behavior of porous magnesium scaffold for biomedical applications. Adv Powder Technol. 2017;28(12):3204-3212. doi: 10.1016/j.apt.2017.09.024
  75. Zhuang H, Han Y, Feng A. Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater Sci Eng C. 2008;28(8):1462-1466. doi: 10.1016/j.msec.2008.04.001
  76. Wang C, Liu J, Min S, et al. The effect of pore size on the mechanical properties, biodegradation and osteogenic effects of additively manufactured magnesium scaffolds after high temperature oxidation: An in vitro and in vivo study. Bioact Mater. 2023;28:537-548. doi: 10.1016/j.bioactmat.2023.06.009
  77. Kopp A, Derra T, Müther M, et al. Influence of design and postprocessing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds. Acta Biomater. 2019;98:23-35. doi: 10.1016/j.actbio.2019.04.012
  78. Zhen Z, Xi TF, Zheng YF. A review on in vitro corrosion performance test of biodegradable metallic materials. T Nonferr Metal Soc. 2013;23(8):2283-2293. doi: 10.1016/s1003-6326(13)62730-2
  79. Abidin NIZ, Rolfe B, Owen H, et al. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros Sci. 2013;75:354-366. doi: 10.1016/j.corsci.2013.06.019
  80. Hou R, Feyerabend F, Helmholz H, Garamus VM, Willumeit-Römer R. Effects of proteins on magnesium degradation-static vs. dynamic conditions. J Magnesium Alloys. 2023;11(4):1332-1342. doi: 10.1016/j.jma.2021.07.021
  81. Ng W, Chiu K, Cheng F. Effect of pH on the in vitro corrosion rate of magnesium degradable implant material. Mater Sci Eng C. 2010;30(6):898-903. doi: 10.1016/j.msec.2010.04.003
  82. Marco I, Feyerabend F, Willumeit-Römer R, Van der Biest O. Degradation testing of Mg alloys in Dulbecco’s modified eagle medium: Influence of medium sterilization. Mater Sci Eng C Mater Biol Appl. 2016;62:68-78. doi: 10.1016/j.msec.2016.01.039
  83. Jia G, Chen C, Zhang J, et al. In vitro degradation behavior of Mg scaffolds with three-dimensional interconnected porous structures for bone tissue engineering. Corros Sci. 2018;144:301-312. doi: 10.1016/j.corsci.2018.09.001
  84. Saad APM, Jasmawati N, Harun MN, et al. Dynamic degradation of porous magnesium under a simulated environment of human cancellous bone. Corros Sci. 2016;112:495-506. doi: 10.1016/j.corsci.2016.08.017
  85. Wang Y, Huang H, Jia G, Zeng H, Yuan G. Fatigue and dynamic biodegradation behavior of additively manufactured Mg scaffolds. Acta Biomater. 2021;135:705-722. doi: 10.1016/j.actbio.2021.08.040
  86. Zhao F, Vaughan TJ, Mcnamara LM. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold. Biomech Model Mechanobiol. 2015;14:231-243. doi: 10.1007/s10237-014-0599-z
  87. Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27(7):1013-1018. doi: 10.1016/j.biomaterials.2005.07.037
  88. Kleer-Reiter N, Julmi S, Feichtner F, et al. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Materials. 2021;16(3):035037. doi: 10.1088/1748-605x/abf5c5
  89. Li Y, Zhou J, Pavanram P, et al. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378-392. doi: 10.1016/j.actbio.2017.12.008
  90. Yin Yee Chin P, Cheok Q, Glowacz A, Caesarendra W. A review of in-vivo and in-vitro real-time corrosion monitoring systems of biodegradable metal implants. Appl Sci. 2020;10(9):3141. doi: 10.3390/app10093141
  91. Bobe K, Willbold E, Morgenthal I, et al. In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater. 2013;9(10):8611-8623. doi: 10.1016/j.actbio.2013.03.035
  92. Kim JA, Lim J, Naren R, Yun HS, Park EK. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo. Acta Biomater. 2016;44:155-167. doi: 10.1016/j.actbio.2016.08.039
  93. Feyerabend F. In vitro analysis of magnesium corrosion in orthopaedic biomaterials. Biomater Bone Regener. 2014: 225-269. doi: 10.1533/9780857098104.2.225
  94. Kirkland N, Birbilis N, Staiger M. Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations. Acta Biomater. 2012;8(3):925-936. doi: 10.1016/j.actbio.2011.11.014
  95. Saad AP, Prakoso AT, Sulong M, Basri H, Wahjuningrum DA, Syahrom A. Impacts of dynamic degradation on the morphological and mechanical characterisation of porous magnesium scaffold. Biomech Model Mechanobiol. 2019;18:797-811. doi: 10.1007/s10237-018-01115-z
  96. Liu Y, Yang Z, Tan L, Li H, Zhang Y. An animal experimental study of porous magnesium scaffold degradation and osteogenesis. Braz J Med Biol Res. 2014;47(8):715-720. doi: 10.1590/1414-431x20144009
  97. Zhao D, Wang T, Nahan K, et al. In vivo characterization of magnesium alloy biodegradation using electrochemical H2 monitoring, ICP-MS, and XPS. Acta Biomater. 2017;50:556-565. doi: 10.1016/j.actbio.2017.01.024
  98. Zhao D, Wang T, Hoagland W, et al. Visual H2 sensor for monitoring biodegradation of magnesium implants in vivo. Acta Biomater. 2016;45:399-409. doi: 10.1016/j.actbio.2016.08.049
  99. Abdalla M, Joplin A, Elahinia M, Ibrahim H. Corrosion modeling of magnesium and its alloys for biomedical applications. Corros Mater Degrad. 2020;1(2):11. doi: 10.3390/cmd1020011
  100. Barzegari M, Mei D, Lamaka SV, Geris L. Computational modeling of degradation process of biodegradable magnesium biomaterials. Corros Sci. 2021;190:109674. doi: 10.1016/j.corsci.2021.109674
  101. Grogan JA, Leen SB, McHugh PE. A physical corrosion model for bioabsorbable metal stents. Acta Biomater. 2014;10(5):2313-2322. doi: 10.1016/j.actbio.2013.12.059
  102. Bajger P, Ashbourn J, Manhas V, Guyot Y, Lietaert K, Geris L. Mathematical modelling of the degradation behaviour of biodegradable metals. Biomech Model Mechanobiol. 2017;16:227-238. doi: 10.1007/s10237-016-0812-3
  103. Grogan J, O’Brien B, Leen S, McHugh P. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 2011;7(9):3523-3533. doi: 10.1016/j.actbio.2011.05.032
  104. Grogan JA, Leen SB, McHugh PE. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials. 2013;34(33):8049-8060. doi: 10.1016/j.biomaterials.2013.07.010
  105. Gastaldi D, Sassi V, Petrini L, Vedani M, Trasatti S, Migliavacca F. Continuum damage model for bioresorbable magnesium alloy devices-Application to coronary stents. J Mech Behav Biomed Mater. 2011;4(3):352-365. doi: 10.1016/j.jmbbm.2010.11.003
  106. Wilder JW, Clemons C, Golovaty D, Kreider KL, Young GW, Lillard RS. An adaptive level set approach for modeling damage due to galvanic corrosion. J Eng Math. 2015;91:121-142.doi: 10.1007/s10665-014-9732-3
  107. Gao Y, Wang L, Gu X, Chu Z, Guo M, Fan Y. A quantitative study on magnesium alloy stent biodegradation. J Biomech. 2018;74:98-105. doi: 10.1016/j.jbiomech.2018.04.027
  108. Duddu R. Numerical modeling of corrosion pit propagation using the combined extended finite element and level set method. Comput Mech. 2014;54(3):613-627. doi: 10.1007/s00466-014-1010-8
  109. Vijayaraghavan V, Garg A, Gao L, Vijayaraghavan R. Finite element based physical chemical modeling of corrosion in magnesium alloys. Metals. 2017;7(3):83. doi: 10.3390/met7030083
  110. Quinn C, Van Gaalen K, McHugh PE, Kopp A, Vaughan TJ. An enhanced phenomenological model to predict surface-based localised corrosion of magnesium alloys for medical use. J Mech Behav Biomed Mater. 2023;138:105637. doi: 10.1016/j.jmbbm.2022.105637
  111. Boland EL, Shirazi RN, Grogan JA, McHugh PE. Mechanical and corrosion testing of magnesium WE43 specimens for pitting corrosion model calibration. Adv Eng Mater. 2018;20(10):1800656. doi: 10.1002/adem.201800656
  112. Sanz-Herrera JA, Reina-Romo E, Boccaccini AR. In silico design of magnesium implants: Macroscopic modeling. J Mech Behav Biomed Mater. 2018;79:181-188. doi: 10.1016/j.jmbbm.2017.12.016
  113. Amerinatanzi A, Mehrabi R, Ibrahim H, Dehghan A, Shayesteh Moghaddam N, Elahinia M. Predicting the biodegradation of magnesium alloy implants: Modeling, parameter identification, and validation. Bioengineering. 2018;5(4):105. doi: 10.3390/bioengineering5040105
  114. Shen Z, Zhao M, Bian D, et al. Predicting the degradation behavior of magnesium alloys with a diffusion-based theoretical model and in vitro corrosion testing. J Mater Sci Technol. 2019;35(7):1393-1402. doi: 10.1016/j.jmst.2019.02.004
  115. Putra RU, Basri H, Prakoso AT, et al. Level of activity changes increases the fatigue life of the porous magnesium scaffold, as observed in dynamic immersion tests, over time. Sustainability. 2023;15(1):823. doi: 10.3390/su15010823
  116. Sanz-Herrera JA, Reina-Romo E. Continuum modeling and simulation in bone tissue engineering. Appl Sci. 2019;9(18):3674. doi: 10.3390/app9183674
  117. Ahmed H, Bedding-Tyrrell M, Deganello D, Xia Z, Xiong Y, Zhao F. Efficient calculation of fluid-induced wall shear stress within tissue engineering scaffolds by an empirical model. Med Novel Technol Devices. 2023;18:100223. doi: 10.1016/j.medntd.2023.100223
  118. Chalisgaonkar R. Insight in applications, manufacturing and corrosion behaviour of magnesium and its alloys-A review. Mater Today Proc. 2020;26:1060-1071. doi: 10.1016/j.matpr.2020.02.211
  119. Dong J, Lin T, Shao H, et al. Advances in degradation behavior of biomedical magnesium alloys: A review. J Alloys Compd. 2022;908:164600. doi: 10.1016/j.jallcom.2022.164600
  120. Chen J, Tan L, Yu X, Etim IP, Ibrahim M, Yang K. Mechanical properties of magnesium alloys for medical application: A review. J Mech Behav Biomed Mater. 2018;87:68-79. doi: 10.1016/j.jmbbm.2018.07.022
  121. Erdmann N, Angrisani N, Reifenrath J, et al. Biomechanical testing and degradation analysis of MgCa0. 8 alloy screws: A comparative in vivo study in rabbits. Acta Biomater. 2011;7(3):1421-1428. doi: 10.1016/j.actbio.2010.10.031
  122. Singh S, Manoj Kumar R, Kuntal KK, et al. Sol-gel derived hydroxyapatite coating on Mg-3Zn alloy for orthopedic application. JOM. 2015;67(4):702-712. doi: 10.1007/s11837-015-1364-1
  123. Gu X, Xie X, Li N, Zheng Y, Qin L. In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal. Acta Biomater. 2012;8(6):2360-2374. doi: 10.1016/j.actbio.2012.02.018
  124. Niu J, Xiong M, Guan X, et al. The in vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results. Corros Sci. 2016;113:183-187. doi: 10.1016/j.corsci.2016.10.009
  125. Gawlik MM, Wiese B, Desharnais V, Ebel T, Willumeit- Römer R. The effect of surface treatments on the degradation of biomedical Mg alloys-a review paper. Materials. 2018;11(12):2561. doi: 10.3390/ma11122561
  126. Saket M, Amini R, Kardar P, Ganjaee M. The chemical treatment of the AZ31-Magnesium alloy surface by a high-performance corrosion protective praseodymium (III)- based film. Mater Chem Phys. 2021;260:124113. doi: 10.1016/j.matchemphys.2020.124113
  127. Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications-A review. J Biomed Mater Res B Appl Biomater. 2019;107(6):1970-1996. doi: 10.1002/jbm.b.34290
  128. Esmaily M, Svensson J, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion. Prog Mater Sci. 2017;89:92-193. doi: 10.1016/j.pmatsci.2017.04.011
  129. Bergmann G, Graichen F, Rohlmann A, et al. Realistic loads for testing hip implants. Biomed Mater Eng. 2010;20(2):65- 75. doi: 10.3233/bme-2010-0616
  130. Li X, Chu C, Chu PK. Effects of external stress on biodegradable orthopedic materials: A review. Bioact Mater. 2016;1(1):77-84. doi: 10.1016/j.bioactmat.2016.09.002
  131. Wu H, Wang X, Wang G, et al. Advancing scaffold-assisted modality for in situ osteochondral regeneration: A shift from biodegradable to bioadaptable. Adv Mater. 2024;36(47):2407040. doi: 10.1002/adma.202407040
  132. Callens SJ, Fan D, van Hengel IA, et al. Emergent collective organization of bone cells in complex curvature fields. Nat Commun. 2023;14(1):855. doi: 10.1038/s41467-023-36436-w
  133. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: Three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. 2006;27(35):5892- 5900. doi: 10.1016/j.biomaterials.2006.08.013
  134. Egan PF, Gonella VC, Engensperger M, Ferguson SJ, Shea K. Computationally designed lattices with tuned properties for tissue engineering using 3D printing. PLoS One. 2017;12(8):e0182902. doi: 10.1371/journal.pone.0182902
  135. Aghion E, Perez Y. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology. Mater Charact. 2014;96:78-83. doi: 10.1016/j.matchar.2014.07.012
  136. Jia G, Huang H, Niu J, et al. Exploring the interconnectivity of biomimetic hierarchical porous Mg scaffolds for bone tissue engineering: Effects of pore size distribution on mechanical properties, degradation behavior and cell migration ability. J Magn Alloys. 2021;9(6):1954-1966. doi: 10.1016/j.jma.2021.02.001
  137. Li Z, Chen Z, Chen X, Zhao R. Multi-objective optimization for designing porous scaffolds with controllable mechanics and permeability: A case study on triply periodic minimal surface scaffolds. Compos Struct. 2024;333:117923. doi: 10.1016/j.compstruct.2024.117923
  138. Chen Y, Zhou S, Li Q. Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials. 2011;32(22):5003-5014. doi: 10.1016/j.biomaterials.2011.03.064
  139. Truscello S, Kerckhofs G, Van Bael S, Pyka G, Schrooten J, Van Oosterwyck H. Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study. Acta Biomater. 2012;8(4):1648-1658. doi: 10.1016/j.actbio.2011.12.021
  140. Jeong CG, Hollister SJ. Mechanical, permeability, and degradation properties of 3D designed poly (1, 8 octanediol‐co‐citrate) scaffolds for soft tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;93(1):141-149. doi: 10.1002/jbm.b.31568
  141. Guo X, Zheng X, Yang Y, Yang X, Yi Y. Mechanical behavior of TPMS-based scaffolds: A comparison between minimal surfaces and their lattice structures. SN Appl Sci. 2019;1(10):1145. doi: 10.1007/s42452-019-1167-z
  142. Cheng MQ, Wahafu T, Jiang GF, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep. 2016;6(1):24134. doi: 10.1038/srep24134
  143. Yan Y, Kang Y, Li D, et al. Microstructure, mechanical properties and corrosion behavior of porous Mg-6 wt.% Zn scaffolds for bone tissue engineering. J Mater Eng Perform. 2018;27:970-984. doi: 10.1007/s11665-018-3189-x
  144. Wang C, Min S, Liu J, et al. Effect of pore geometry on properties of high-temperature oxidized additively manufactured magnesium scaffolds. J Magn Alloys. 2023;12(11):4509-4520. doi: 10.1016/j.jma.2023.08.016
  145. Augustin J, Feichtner F, Waselau AC, et al. Effect of pore size on tissue ingrowth and osteoconductivity in biodegradable Mg alloy scaffolds. J Appl Biomater Funct Mater. 2022;20:22808000221078168. doi: 10.1177/22808000221078168
  146. Shi Y, Xu W, Che H, et al. The effect of topological design on the degradation behavior of additively manufactured porous zinc alloy. NPJ Mater Degrad. 2024;8(1):42. doi: 10.21203/rs.3.rs-3460164/v1
  147. Motaharinia A, Drelich JW, Sharif S, et al. Overview of porous magnesium-based scaffolds: development, properties and biomedical applications. Mater Futures. 2025;4(1):012401. doi: 10.1088/2752-5724/ad9493
  148. Antoniac I, Manescu V, Paltanea G, et al. Additive manufactured magnesium-based scaffolds for tissue engineering. Materials. 2022;15(23):8693. doi: 10.3390/ma15238693
  149. Bonithon R, Lupton C, Roldo M, et al. Open-porous magnesium-based scaffolds withstand in vitro corrosion under cyclic loading: A mechanistic study. Bioact Mater. 2023;19:406-417. doi: 10.1016/j.bioactmat.2022.04.012
  150. Guo L, Zhang X, Zhang Z, Hao Z. Degradation characteristics of high-purity magnesium implants under single static and cyclic compressive loads in vivo and in vitro. J Magn Alloys. 2025;13:1480-1494. doi: 10.1016/j.jma.2024.12.014
  151. Schmidt M, Waselau AC, Feichtner F, et al. In vivo investigation of open-pored magnesium scaffolds LAE442 with different coatings in an open wedge defect. J Appl Biomater Funct Mater. 2022;20:22808000221142679. doi: 10.1177/22808000221142679
  152. Ye J, Miao B, Xiong Y, et al. 3D printed porous magnesium metal scaffolds with bioactive coating for bone defect repair: Enhancing angiogenesis and osteogenesis. J Nanobiotechnol. 2025;23(1):160. doi: 10.1186/s12951-025-03222-3
  153. Zhang Y, Ding Y, Wang J, et al. Study on degradation behavior of porous magnesium alloy scaffold loaded with rhBMP-2 and repair of bone defects. J Mater Res Technol. 2024;30:6498-6507. doi: 10.1016/j.jmrt.2024.04.227
  154. Lv Z, Peng B, Ye Y, et al. Bolstered bone regeneration by multiscale customized magnesium scaffolds with hierarchical structures and tempered degradation. Bioact Mater. 2025;46:457-475. doi: 10.1016/j.bioactmat.2024.12.002
  155. Gong T, Lu Y, Cheng L. Comparison of the biomechanical performance of three spinal implants for treating the wedge-shaped burst fractures. Med Novel Technol Devices. 2022;13:100109. doi: 10.1016/j.medntd.2021.100109
  156. Lei B, Gao X, Zhang R, Yi X, Zhou Q. In situ magnesium phosphate/polycaprolactone 3D-printed scaffold induce bone regeneration in rabbit maxillofacial bone defect model. Mater Des. 2022;215:110477. doi: 10.1016/j.matdes.2022.110477
  157. Huang X, Lou Y, Duan Y, et al. Biomaterial scaffolds in maxillofacial bone tissue engineering: A review of recent advances. Bioact Mater. 2024;33:129-156. doi: 10.1016/j.bioactmat.2023.10.031
  158. Koo Y, Lee HB, Dong Z, et al. The effects of static and dynamic loading on biodegradable magnesium pins in vitro and in vivo. Sci Rep. 2017;7(1):14710. doi: 10.1038/s41598-017-14836-5
  159. Foroughi AH, Valeri C, Razavi MJ. A review of computational optimization of bone scaffold architecture: Methods, challenges, and perspectives. Prog Biomed Eng. 2024;12:212. doi: 10.1088/2516-1091/ad879a
  160. Bonfanti S, Hiemer S, Zulkarnain R, Guerra R, Zaiser M, Zapperi S. Computational design of mechanical metamaterials. Nat Comput Sci. 2024;4(8):574-583. doi: 10.1038/s43588-024-00672-x
  161. Qian C, Kaminer I, Chen H. A guidance to intelligent metamaterials and metamaterials intelligence. Nat Commun. 2025;16(1):1154. doi: 10.1038/s41467-025-56122-3

 

 

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing