AccScience Publishing / MSAM / Volume 4 / Issue 4 / DOI: 10.36922/MSAM025220046
ORIGINAL RESEARCH ARTICLE

Study on the printing stability of Invar 36 alloy under different process parameter conditions in gas metal arc additive manufacturing

Giulio Mattera*1* Elena Manoli1 Luigi Nele1
Show Less
1 Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
MSAM 2025, 4(4), 025220046 https://doi.org/10.36922/MSAM025220046
Received: 30 May 2025 | Accepted: 3 July 2025 | Published online: 24 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Invar 36, a nickel–iron alloy distinguished by its low coefficient of thermal expansion, is a material of significant interest for high-precision applications in aerospace, moulds used in composite material fabrication processes and metrology. This work investigates the stability of depositing Invar 36 through gas metal arc additive manufacturing (GMA-AM), also known as wire arc additive manufacturing, with a focus on identifying process conditions, in a standard gas metal arc welding (GMAW) process, that promote consistent and defect-minimised builds. A series of experiments was conducted to assess the effects of key process parameters – including wire feed speed, welding speed and arc voltage – on deposition stability. Stability was evaluated through geometrical consistency of the deposited walls, arc behaviour and visual inspection of process-induced anomalies such as spatter and lack of fusion. This study presents a novel methodology to quantitatively assess the stability of the GMA-AM process, along with the construction of a process map specifically tailored for the Invar 36 alloy. The insights gained contribute to advancing the understanding of wire-based additive manufacturing of Invar 36, which is still understudied, and provide a foundation for further investigations into its mechanical performance and microstructural evolution under optimised process parameter conditions.

Graphical abstract
Keywords
Invar 36
Gas metal arc additive manufacturing
Process stability
Wire arc additive manufacturing
Deposition quality
Process parameters
Funding
Not applicable
Conflict of interest
Dr. Giulio Mattera serves as the Editorial Board Member of the journal but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare that they have no competing interests.
References
  1. Kul M, Akgul B, Karabay YZ. The relationship of hot and cold rolling processes with the structure and properties of invar 36. Mater Chem Phys. 2023;295:127215. doi: 10.1016/j.matchemphys.2022.127215
  2. Smith RJ, Lewi GJ, Yates DH. Development and application of nickel alloys in aerospace engineering. Aircr Eng Aerosp Technol. 2001;73(2):138-147. doi: 10.1108/00022660110694995
  3. Khanna N, Gandhi A, Nakum B, Srivastava A. Optimization and analysis of surface roughness for INVAR-36 in end milling operations. Mater Today Proc. 2018;5(2):5281-5288. doi: 10.1016/j.matpr.2017.12.111
  4. Kaladhar M, Subbaiah KV, Rao CHS. Machining of austenitic stainless steels - a review. Int J Mach Mach Mater. 2012;12(1/2):178. doi: 10.1504/IJMMM.2012.048564
  5. Huang G, He G, Gong X, He Y, Liu Y, Huang K. Additive manufacturing of invar 36 alloy. J Mater Res Technol. 2024;30:1241-1268. doi: 10.1016/j.jmrt.2024.02.221
  6. Ding D, Pan Z, Cuiuri D, Li H. Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81(1-4):465-481. doi: 10.1007/s00170-015-7077-3
  7. Pan Z, Ding D, Wu B, Cuiuri D, Li H, Norrish J. Arc welding processes for additive manufacturing: A review. In: Transactions on Intelligent Welding Manufacturing. Vol 1. Germany: Springer Nature; 2018. p. 3-24.
  8. Norrish J, Polden J, Richardson I. A review of wire arc additive manufacturing: Development, principles, process physics, implementation and current status. J Phys D Appl Phys. 2021;54(47):473001. doi: 10.1088/1361-6463/ac1e4a
  9. Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P. Wire + arc additive manufacturing. Mater Sci Technol. 2016;32(7):641-647. doi: 10.1179/1743284715Y.0000000073
  10. Kerber E, Knitt H, Fahrendholz-Heiermann JL, et al. Variable layer heights in wire arc additive manufacturing and WAAM information models. Machines. 2024;12(7):432. doi: 10.3390/machines12070432
  11. Schmitz M, Wiartalla J, Gelfgren M, Mann S, Corves B, Hüsing M. A robot-centered path-planning algorithm for multidirectional additive manufacturing for WAAM processes and pure object manipulation. Appl Sci. 2021;11(13):5759. doi: 10.3390/app11135759
  12. Yuan L, Pan Z, Ding D, et al. Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robot Comput Integr Manuf. 2020;63:101916. doi: 10.1016/j.rcim.2019.101916
  13. Ribeiro F, Norrish J. (1997, July). Making components with controlled metal deposition. In ISIE’97: Proceedings of the IEEE International Symposium on Industrial Electronics (pp. 831–835). IEEE.
  14. Lin Z, Song K, Yu X. A review on wire and arc additive manufacturing of titanium alloy. J Manuf Process. 2021;70:24-45. doi: 10.1016/j.jmapro.2021.08.018
  15. Jin W, Zhang C, Jin S, Tian Y, Wellmann D, Liu W. Wire arc additive manufacturing of stainless steels: A review. Appl Sci. 2020;10(5):1563. doi: 10.3390/app10051563
  16. Bhuvanesh Kumar M, Sathiya P, Senthil SM. A critical review of wire arc additive manufacturing of nickel-based alloys: Principles, process parameters, microstructure, mechanical properties, heat treatment effects, and defects. J Braz Soc Mech Sci Eng. 2023;45(3):164. doi: 10.1007/s40430-023-04077-1
  17. Madhvacharyula AS, Pavan AVS, Gorthi S, Chitral S, Venkaiah N, Kiran DV. In situ detection of welding defects: A review. Weld World. 2022;66:611-628. doi: 10.1007/s40194-021-01229-6
  18. Veiga F, Suárez A, Artaza T, Aldalur E. Effect of the heat input on wire-arc additive manufacturing of invar 36 alloy: Microstructure and mechanical properties. Weld World. 2022;66(6):1081-1091. doi: 10.1007/s40194-022-01295-4
  19. Veiga F, Suarez A, Aldalur E, Artaza T. Wire arc additive manufacturing of invar parts: Bead geometry and melt pool monitoring. Measurement. 2022;189:110452. doi: 10.1016/j.measurement.2021.110452
  20. Sood A, Schimmel J, Ferreira VM, et al. Directed energy deposition of invar 36 alloy using cold wire pulsed gas tungsten arc welding: Effect of heat input on the microstructure and functional behaviour. J Mater Res Technol. 2023;25:6183-6197. doi: 10.1016/j.jmrt.2023.06.280
  21. Norrish J, Cuiuri D. The controlled short circuit GMAW process: A tutorial. J Manuf Process. 2014;16(1):86-92. doi: 10.1016/j.jmapro.2013.08.006
  22. Bruce M, Deruntz D. Assessing the benefits of surface tension transfer® welding to industry manufacturing materials and processes metals production welding. J Ind Technol. 2003;19:1–8.
  23. Iturrioz A, Ukar E, Pereira JC. Influence of the manufacturing strategy on the microstructure and mechanical properties of Invar 36 alloy parts manufactured by CMT-WAAM. Int J Adv Manuf Technol. 2025;136(2):729-744. doi: 10.1007/s00170-024-14853-5
  24. Jiao G, Fang X, Zhang M, et al. Synergistic improvement of mechanical property and thermal expansion of wire-arc DED invar alloy enabled by a novel deposition strategy. J Manuf Process. 2024;121:121-135. doi: 10.1016/j.jmapro.2024.05.031
  25. Fowler J, Nycz A, Noakes M, M. Masuo C, Vaughan D. Wire-arc additive manufacturing: Invar deposition characterization. In: 2019 International Solid Freeform Fabrication Symposium. Austin, Texas: USA; 2019.
  26. Aldalur E, Suárez A, Veiga F. Thermal expansion behaviour of invar 36 alloy parts fabricated by wire-arc additive manufacturing. J Mater Res Technol. 2022;19:3634-3645. doi: 10.1016/j.jmrt.2022.06.114
  27. Jiao G, Fang X, Chen X, et al. The origin of low thermal expansion coefficient and enhanced tensile properties of Invar alloy fabricated by directed energy deposition. J Mater Process Technol. 2023;317:117994. doi: 10.1016/j.jmatprotec.2023.117994
  28. Doodman Tipi A. The study on the drop detachment for automatic pipeline GMAW system: Free flight mode. Int J Adv Manuf Technol. 2010;50(1-4):137-147. doi: 10.1007/s00170-010-2515-8
  29. Doodman Tipi AR, Hosseini Sani SK, Pariz N. Improving the dynamic metal transfer model of gas metal arc welding (GMAW) process. Int J Adv Manuf Technol. 2015;76(1):657-668. doi: 10.1007/s00170-014-6307-4
  30. Mattera G, Vozza M, Polden J, Nele L, Pan Z. Frequency informed convolutional autoencoder for in situ anomaly detection in wire arc additive manufacturing. J Intell Manuf. 2024:1-16. doi: 10.1007/s10845-024-02507-y
  31. Mattera G, Polden J, Norrish J. Monitoring the gas metal arc additive manufacturing process using unsupervised machine learning. Weld World. 2024;68:2853-2867. doi: 10.1007/s40194-024-01836-z
  32. Mu H, He F, Yuan L, Commins P, Xu J, Pan Z. High- frequency real-time bead geometry measurement in wire arc additive manufacturing based on welding signals. IEEE Trans Ind Inform. 2024;21:2630-2639. doi: 10.1109/TII.2024.3514121
  33. Xia C, Pan Z, Polden J, Li H, Xu Y, Chen S. Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. J Intell Manuf. 2022;33(5):1467-1482. doi: 10.1007/s10845-020-01725-4
  34. Wu B, Pan Z, Chen G, et al. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling. Sci Technol Weld Join. 2019;24(5):484-494. doi: 10.1080/13621718.2019.1580439
  35. Colegrove PA, Coules HE, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol. 2013;213(10):1782-1791. doi: 10.1016/j.jmatprotec.2013.04.012
  36. Gullipalli C, Thawari N, Burad P, Gupta TVK. Residual stresses and distortions in additive manufactured Inconel 718. Mater Manuf Process. 2023;38(12):1549-1560. doi: 10.1080/10426914.2023.2165663
  37. Justus Panicker CT, Rohit Surya K, Senthilkumar V. Novel process parameters based approach for reducing residual stresses in WAAM. Mater Today Process. 2022;59:1119-1126. doi: 10.1016/j.matpr.2022.03.025
  38. Zavdoveev A, Pozniakov V, Baudin T, et al. Optimization of the pulsed arc welding parameters for wire arc additive manufacturing in austenitic steel applications. Int J Adv Manuf Technol. 2022;119(7-8):5175-5193. doi: 10.1007/s00170-022-08704-4
  39. De Sousa Figueiredo GG, De Mello Picchi IB, Lima Dos Santos M, López EAT, Oliveira JP, De Abreu Santos TF. Parametric study and response optimization for the wire + arc additive manufacturing of 316LSi via pulsed GMAW. Int J Adv Manuf Technol. 2023;129(7-8):3073-3092. doi: 10.1007/s00170-023-12470-2
  40. Derekar KS, Addison A, Joshi SS, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium. Int J Adv Manuf Technol. 2020;107(1-2):311-331. doi: 10.1007/s00170-020-04946-2
  41. Cai BH, Fan JK, Li J, Yang DQ, Peng Y, Wang KH. Processing, microstructure, and mechanical properties of wire arc additively-manufactured AZ91 magnesium alloy using cold arc process. Trans Nonferrous Metals Soc China. 2025;35(1):91-104. doi: 10.1016/S1003-6326(24)66667-7
  42. Norrish J. Recent gas metal arc welding (GMAW) process developments: The implications related to international fabrication standards. Weld World. 2017;61(4):755-767. doi: 10.1007/s40194-017-0463-8

 

 

 

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing