Study on the printing stability of Invar 36 alloy under different process parameter conditions in gas metal arc additive manufacturing

Invar 36, a nickel–iron alloy distinguished by its low coefficient of thermal expansion, is a material of significant interest for high-precision applications in aerospace, moulds used in composite material fabrication processes and metrology. This work investigates the stability of depositing Invar 36 through gas metal arc additive manufacturing (GMA-AM), also known as wire arc additive manufacturing, with a focus on identifying process conditions, in a standard gas metal arc welding (GMAW) process, that promote consistent and defect-minimised builds. A series of experiments was conducted to assess the effects of key process parameters – including wire feed speed, welding speed and arc voltage – on deposition stability. Stability was evaluated through geometrical consistency of the deposited walls, arc behaviour and visual inspection of process-induced anomalies such as spatter and lack of fusion. This study presents a novel methodology to quantitatively assess the stability of the GMA-AM process, along with the construction of a process map specifically tailored for the Invar 36 alloy. The insights gained contribute to advancing the understanding of wire-based additive manufacturing of Invar 36, which is still understudied, and provide a foundation for further investigations into its mechanical performance and microstructural evolution under optimised process parameter conditions.

- Kul M, Akgul B, Karabay YZ. The relationship of hot and cold rolling processes with the structure and properties of invar 36. Mater Chem Phys. 2023;295:127215. doi: 10.1016/j.matchemphys.2022.127215
- Smith RJ, Lewi GJ, Yates DH. Development and application of nickel alloys in aerospace engineering. Aircr Eng Aerosp Technol. 2001;73(2):138-147. doi: 10.1108/00022660110694995
- Khanna N, Gandhi A, Nakum B, Srivastava A. Optimization and analysis of surface roughness for INVAR-36 in end milling operations. Mater Today Proc. 2018;5(2):5281-5288. doi: 10.1016/j.matpr.2017.12.111
- Kaladhar M, Subbaiah KV, Rao CHS. Machining of austenitic stainless steels - a review. Int J Mach Mach Mater. 2012;12(1/2):178. doi: 10.1504/IJMMM.2012.048564
- Huang G, He G, Gong X, He Y, Liu Y, Huang K. Additive manufacturing of invar 36 alloy. J Mater Res Technol. 2024;30:1241-1268. doi: 10.1016/j.jmrt.2024.02.221
- Ding D, Pan Z, Cuiuri D, Li H. Wire-feed additive manufacturing of metal components: Technologies, developments and future interests. Int J Adv Manuf Technol. 2015;81(1-4):465-481. doi: 10.1007/s00170-015-7077-3
- Pan Z, Ding D, Wu B, Cuiuri D, Li H, Norrish J. Arc welding processes for additive manufacturing: A review. In: Transactions on Intelligent Welding Manufacturing. Vol 1. Germany: Springer Nature; 2018. p. 3-24.
- Norrish J, Polden J, Richardson I. A review of wire arc additive manufacturing: Development, principles, process physics, implementation and current status. J Phys D Appl Phys. 2021;54(47):473001. doi: 10.1088/1361-6463/ac1e4a
- Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P. Wire + arc additive manufacturing. Mater Sci Technol. 2016;32(7):641-647. doi: 10.1179/1743284715Y.0000000073
- Kerber E, Knitt H, Fahrendholz-Heiermann JL, et al. Variable layer heights in wire arc additive manufacturing and WAAM information models. Machines. 2024;12(7):432. doi: 10.3390/machines12070432
- Schmitz M, Wiartalla J, Gelfgren M, Mann S, Corves B, Hüsing M. A robot-centered path-planning algorithm for multidirectional additive manufacturing for WAAM processes and pure object manipulation. Appl Sci. 2021;11(13):5759. doi: 10.3390/app11135759
- Yuan L, Pan Z, Ding D, et al. Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robot Comput Integr Manuf. 2020;63:101916. doi: 10.1016/j.rcim.2019.101916
- Ribeiro F, Norrish J. (1997, July). Making components with controlled metal deposition. In ISIE’97: Proceedings of the IEEE International Symposium on Industrial Electronics (pp. 831–835). IEEE.
- Lin Z, Song K, Yu X. A review on wire and arc additive manufacturing of titanium alloy. J Manuf Process. 2021;70:24-45. doi: 10.1016/j.jmapro.2021.08.018
- Jin W, Zhang C, Jin S, Tian Y, Wellmann D, Liu W. Wire arc additive manufacturing of stainless steels: A review. Appl Sci. 2020;10(5):1563. doi: 10.3390/app10051563
- Bhuvanesh Kumar M, Sathiya P, Senthil SM. A critical review of wire arc additive manufacturing of nickel-based alloys: Principles, process parameters, microstructure, mechanical properties, heat treatment effects, and defects. J Braz Soc Mech Sci Eng. 2023;45(3):164. doi: 10.1007/s40430-023-04077-1
- Madhvacharyula AS, Pavan AVS, Gorthi S, Chitral S, Venkaiah N, Kiran DV. In situ detection of welding defects: A review. Weld World. 2022;66:611-628. doi: 10.1007/s40194-021-01229-6
- Veiga F, Suárez A, Artaza T, Aldalur E. Effect of the heat input on wire-arc additive manufacturing of invar 36 alloy: Microstructure and mechanical properties. Weld World. 2022;66(6):1081-1091. doi: 10.1007/s40194-022-01295-4
- Veiga F, Suarez A, Aldalur E, Artaza T. Wire arc additive manufacturing of invar parts: Bead geometry and melt pool monitoring. Measurement. 2022;189:110452. doi: 10.1016/j.measurement.2021.110452
- Sood A, Schimmel J, Ferreira VM, et al. Directed energy deposition of invar 36 alloy using cold wire pulsed gas tungsten arc welding: Effect of heat input on the microstructure and functional behaviour. J Mater Res Technol. 2023;25:6183-6197. doi: 10.1016/j.jmrt.2023.06.280
- Norrish J, Cuiuri D. The controlled short circuit GMAW process: A tutorial. J Manuf Process. 2014;16(1):86-92. doi: 10.1016/j.jmapro.2013.08.006
- Bruce M, Deruntz D. Assessing the benefits of surface tension transfer® welding to industry manufacturing materials and processes metals production welding. J Ind Technol. 2003;19:1–8.
- Iturrioz A, Ukar E, Pereira JC. Influence of the manufacturing strategy on the microstructure and mechanical properties of Invar 36 alloy parts manufactured by CMT-WAAM. Int J Adv Manuf Technol. 2025;136(2):729-744. doi: 10.1007/s00170-024-14853-5
- Jiao G, Fang X, Zhang M, et al. Synergistic improvement of mechanical property and thermal expansion of wire-arc DED invar alloy enabled by a novel deposition strategy. J Manuf Process. 2024;121:121-135. doi: 10.1016/j.jmapro.2024.05.031
- Fowler J, Nycz A, Noakes M, M. Masuo C, Vaughan D. Wire-arc additive manufacturing: Invar deposition characterization. In: 2019 International Solid Freeform Fabrication Symposium. Austin, Texas: USA; 2019.
- Aldalur E, Suárez A, Veiga F. Thermal expansion behaviour of invar 36 alloy parts fabricated by wire-arc additive manufacturing. J Mater Res Technol. 2022;19:3634-3645. doi: 10.1016/j.jmrt.2022.06.114
- Jiao G, Fang X, Chen X, et al. The origin of low thermal expansion coefficient and enhanced tensile properties of Invar alloy fabricated by directed energy deposition. J Mater Process Technol. 2023;317:117994. doi: 10.1016/j.jmatprotec.2023.117994
- Doodman Tipi A. The study on the drop detachment for automatic pipeline GMAW system: Free flight mode. Int J Adv Manuf Technol. 2010;50(1-4):137-147. doi: 10.1007/s00170-010-2515-8
- Doodman Tipi AR, Hosseini Sani SK, Pariz N. Improving the dynamic metal transfer model of gas metal arc welding (GMAW) process. Int J Adv Manuf Technol. 2015;76(1):657-668. doi: 10.1007/s00170-014-6307-4
- Mattera G, Vozza M, Polden J, Nele L, Pan Z. Frequency informed convolutional autoencoder for in situ anomaly detection in wire arc additive manufacturing. J Intell Manuf. 2024:1-16. doi: 10.1007/s10845-024-02507-y
- Mattera G, Polden J, Norrish J. Monitoring the gas metal arc additive manufacturing process using unsupervised machine learning. Weld World. 2024;68:2853-2867. doi: 10.1007/s40194-024-01836-z
- Mu H, He F, Yuan L, Commins P, Xu J, Pan Z. High- frequency real-time bead geometry measurement in wire arc additive manufacturing based on welding signals. IEEE Trans Ind Inform. 2024;21:2630-2639. doi: 10.1109/TII.2024.3514121
- Xia C, Pan Z, Polden J, Li H, Xu Y, Chen S. Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning. J Intell Manuf. 2022;33(5):1467-1482. doi: 10.1007/s10845-020-01725-4
- Wu B, Pan Z, Chen G, et al. Mitigation of thermal distortion in wire arc additively manufactured Ti6Al4V part using active interpass cooling. Sci Technol Weld Join. 2019;24(5):484-494. doi: 10.1080/13621718.2019.1580439
- Colegrove PA, Coules HE, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. J Mater Process Technol. 2013;213(10):1782-1791. doi: 10.1016/j.jmatprotec.2013.04.012
- Gullipalli C, Thawari N, Burad P, Gupta TVK. Residual stresses and distortions in additive manufactured Inconel 718. Mater Manuf Process. 2023;38(12):1549-1560. doi: 10.1080/10426914.2023.2165663
- Justus Panicker CT, Rohit Surya K, Senthilkumar V. Novel process parameters based approach for reducing residual stresses in WAAM. Mater Today Process. 2022;59:1119-1126. doi: 10.1016/j.matpr.2022.03.025
- Zavdoveev A, Pozniakov V, Baudin T, et al. Optimization of the pulsed arc welding parameters for wire arc additive manufacturing in austenitic steel applications. Int J Adv Manuf Technol. 2022;119(7-8):5175-5193. doi: 10.1007/s00170-022-08704-4
- De Sousa Figueiredo GG, De Mello Picchi IB, Lima Dos Santos M, López EAT, Oliveira JP, De Abreu Santos TF. Parametric study and response optimization for the wire + arc additive manufacturing of 316LSi via pulsed GMAW. Int J Adv Manuf Technol. 2023;129(7-8):3073-3092. doi: 10.1007/s00170-023-12470-2
- Derekar KS, Addison A, Joshi SS, et al. Effect of pulsed metal inert gas (pulsed-MIG) and cold metal transfer (CMT) techniques on hydrogen dissolution in wire arc additive manufacturing (WAAM) of aluminium. Int J Adv Manuf Technol. 2020;107(1-2):311-331. doi: 10.1007/s00170-020-04946-2
- Cai BH, Fan JK, Li J, Yang DQ, Peng Y, Wang KH. Processing, microstructure, and mechanical properties of wire arc additively-manufactured AZ91 magnesium alloy using cold arc process. Trans Nonferrous Metals Soc China. 2025;35(1):91-104. doi: 10.1016/S1003-6326(24)66667-7
- Norrish J. Recent gas metal arc welding (GMAW) process developments: The implications related to international fabrication standards. Weld World. 2017;61(4):755-767. doi: 10.1007/s40194-017-0463-8