AccScience Publishing / MSAM / Volume 4 / Issue 4 / DOI: 10.36922/MSAM025220045
ORIGINAL RESEARCH ARTICLE

Microstructure, phase evolution, and properties of laser powder bed fusion-fabricated Ni50Ti50/Ni-rich NiTi multi-material structures

Arseniy Repnin1* Eduard Farber1 Evgenii Borisov1 Anatoliy Popovich1
Show Less
1 Laboratory “Laser and Additive Technologies,” Institute of Machinery, Materials, and Transport, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
MSAM 2025, 4(4), 025220045 https://doi.org/10.36922/MSAM025220045
Received: 30 May 2025 | Accepted: 8 July 2025 | Published online: 8 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Multi-material additive manufacturing offers a new approach to creating parts with locally tailored properties. This study focuses on fabricating and characterizing a novel multi-material system composed of equiatomic Nickel (Ni)50Titanium (Ti)50 shape memory alloy–exhibiting shape memory functionality–and Ni-rich NiTi alloy–offering enhanced strength–using laser powder bed fusion (L-PBF). Optimal L-PBF parameters for the Ni-rich NiTi alloy (51.4 at.% Ni) were determined based on density analysis (laser power: 250 W, scan speed: 350 mm/s, hatch distance: 120 μm, layer thickness: 40 μm). Multi-material specimens were printed using a modified L-PBF system with dual powder feeders. Microstructural analysis revealed distinct columnar grains in the as-built Ni50Ti50 zone and melt pool boundaries in the Ni-rich NiTi zone, both evolving after heat treatment (800°C/1 h + 430°C/6 h). Notably, the interface between the two alloys exhibited minimal mixing, with no formation of detrimental secondary phases beyond those intrinsic to each alloy (B19’ martensite in Ni50Ti50; B2 austenite and Ni4Ti3 precipitates in Ni-rich NiTi after aging). Chemical composition analysis confirmed the maintenance of target compositions in their respective zones. Microhardness showed a gradient decrease (from ~220 HV to ~190 HV) from the Ni-rich NiTi zone to the Ni50Ti50 zone. Tensile tests yielded an average ultimate tensile strength of 572.2 ± 57.8 MPa and elongation of 18.8 ± 2.2%. Functional testing demonstrated successful shape recovery upon heating in the Ni50Ti50 region (~5 mm deformation recovered), confirming the preservation of the shape memory effect within the multi-material samples. This work demonstrates the feasibility of L-PBF for producing functional NiTi multi-material structures with combined shape memory and high-strength properties.

Graphical abstract
Keywords
Shape memory alloy
Laser powder bed fusion
Multi-material system
Nickel titanium
Funding
This research was funded by the Ministry of Science and Higher Education of the Russian Federation (State Assignment for basic research no: 075-03-2025-256).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Wagner A, Rogers H, Le A. Exploring new frontiers in multi-material additive manufacturing. IEEE Eng Manag Rev. 2024;53(2):122-133. doi: 10.1109/EMR.2024.3412403
  2. Nazir A, Gokcekaya O, Masum Billah K, et al. Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater Des. 2023;226:111661. doi: 10.1016/J.MATDES.2023.111661
  3. Hasanov S, Alkunte S, Rajeshirke M, et al. Review on additive manufacturing of multi-material parts: Progress and challenges. J Manuf Mater Process. 2021;6(1):4. doi: 10.3390/JMMP6010004
  4. Sherpa BB, Rani R. Advancements in explosive welding process for bimetallic material joining: A review. J Alloy Metall Syst. 2024;6:100078. doi: 10.1016/J.JALMES.2024.100078
  5. Wang D, Sun X, Jiang Y, Chang X, Yonglei X. Review on the application of stainless-clad bimetallic steel in the marine environment. Anti Corrosion Methods Mater. 2024;71(2):132-142. doi: 10.1108/ACMM-06-2023-2832
  6. Li G, Jiang W, Guan F, et al. Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: A review. J Magnes Alloy. 2023;11(9):3059-3098. doi: 10.1016/J.JMA.2023.09.001
  7. Kavousi Sisi A, Ozherelkov D, Chernyshikhin S, Pelevin I, Kharitonova N, Gromov A. Functionally graded multi-materials by laser powder bed fusion: A review on experimental studies. Prog Addit Manuf. 2024;10:1843-1912. doi: 10.1007/S40964-024-00739-1
  8. Nandhakumar R, Venkatesan K. A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness. Mater Today Commun. 2023;35:105538. doi: 10.1016/J.MTCOMM.2023.105538
  9. Gunasekaran J, Sevvel P, Solomon IJ. Metallic materials fabrication by selective laser melting: A review. Mater Today Proc. 2021;37(2):252-256. doi: 10.1016/J.MATPR.2020.05.162
  10. Verma A, Kapil A, Klobčar D, Sharma A. A review on multiplicity in multi-material additive manufacturing: Process, capability, scale, and structure. Mater (Basel). 2023;16(15):5246. doi: 10.3390/MA16155246
  11. Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virt Phys Prototyp. 2021;16(3):347-371. doi: 10.1080/17452759.2021.1928520
  12. Kolluri AP. Multi-material additive manufacturing and future scope and expected progress. Multi Mater Addit Manuf. 2025;16:373-402. doi: 10.1016/B978-0-443-29228-6.00016-5
  13. Aldawood FK. A comprehensive review of 4d printing: State of the arts, opportunities, and challenges. Actuators. 2023;12(3):101. doi: 10.3390/ACT12030101
  14. Ayushi T, Vates UK, Mishra S, Jee Kanu N. Biomimetic 4D printed materials: A State-of-the-art review on concepts, opportunities, and challenges. Mater Today Proc. 2021;47:3313-3319. doi: 10.1016/J.MATPR.2021.07.148
  15. Ding A, Tang F, Alsberg E. 4D printing: A comprehensive review of technologies, materials, stimuli, design, and emerging applications. Chem Rev. 2025;125:3771. doi: 10.1021/acs.chemrev.4c00070
  16. Joharji L, Mishra RB, Alam F, Tytov S, Al-Modaf F, El-Atab N. 4D printing: A detailed review of materials, techniques, and applications. Microelectron Eng. 2022;265:111874. doi: 10.1016/J.MEE.2022.111874
  17. Sinha A, Kumar Rajak D, Shaik NB, et al. A review on 4D printing of Nickel-Titanium smart alloy processing, the effect of major parameters and their biomedical applications. Proc Inst Mech Eng Part E J Process Mech Eng. 2023;0:09544089231154416. doi: 10.1177/09544089231154416
  18. Wang J, He D, Wu X, Guo X, Zhou Z, Tan Z. Preparation of NiTi shape memory alloy with enhanced mechanical properties using selective laser melting. J Manuf Process. 2025;141:570-579. doi: 10.1016/J.JMAPRO.2025.02.077
  19. Ma H, Zhao Y, Luo J, et al. Sequential hardening mechanisms in additive-manufactured NiTi shape memory alloys that can significantly delay compressive failure. Mater Today. 2025;85:36-48. doi: 10.1016/J.MATTOD.2025.04.014
  20. Zhong M, Wu Z, Deng J, Du Y. Anisotropic superelasticity and two-way shape memory effect in selective laser melting fabricated NiTi. J Mater Eng Perform. 2025;1:1-10. doi: 10.1007/S11665-025-11209-2
  21. Rafiee M, Farahani RD, Therriault D. Multi-material 3D and 4D printing: A survey. Adv Sci (Wwinh). 2020;7(12):1902307. doi: 10.1002/ADVS.201902307
  22. Ryan KR, Down MP, Banks CE. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chem Eng J. 2021;403:126162. doi: 10.1016/J.CEJ.2020.126162
  23. Jiang PF, Nie MH, Teng JZ, et al. Multi-material wire arc additive manufacturing of a bio-inspired heterogeneous layered NiTi/ Nb/Ti6Al4V structure: Microstructural evolutions and mechanical properties. Mater Sci Eng A. 2024;890:145896. doi: 10.1016/J.MSEA.2023.145896
  24. Jiang P, Nie M, Teng J, Li X, Zhang Z. Wire arc additive manufacturing NiTi/Nb bionic laminated heterogeneous structure: Microsturcture evolution and mechanical properties. Mater Charact. 2024;217:114326. doi: 10.1016/J.MATCHAR.2024.114326
  25. Jiang PF, Nie MH, Teng JZ, Liu CZ, Zhang ZH. Multi-wire arc additive manufacturing of TC4-Nb-NiTi bionic layered heterogeneous alloy: Microstructure evolution and mechanical properties. Mater Charact. 2023;202:113001. doi: 10.1016/J.MATCHAR.2023.113001
  26. Jiang PF, Nie MH, Zong XM, et al. Microstructure and mechanical properties of TC4/NiTi bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing. Mater Sci Eng A. 2023;866:144678. doi: 10.1016/J.MSEA.2023.144678
  27. Jiang P, Nie M, Teng J, Li Q, Zhang Z. Exploration microstructural evolution and wear mechanisms of wire arc additive manufacturing NiTi/Nb bionic composite materials. Tribol Int. 2024;200:110154. doi: 10.1016/J.TRIBOINT.2024.110154
  28. Ekoi EJ, Degli-Alessandrini G, Zeeshan Mughal M, et al. Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF). Mater Des. 2022;221:110947. doi: 10.1016/J.MATDES.2022.110947
  29. Repnin A, Kim A, Popovich A. Interfacial characterization of selective laser melting of a SS316L/NiTi multi-material with a high-entropy alloy interlayer. Crystals. 2023;13(10):1486. doi: 10.3390/CRYST13101486
  30. Farber E, Orlov A, Borisov E, et al. TiNi alloy lattice structures with negative poisson’s ratio: Computer simulation and experimental results. Met. 2022;12(9):1476. doi: 10.3390/MET12091476
  31. Sefene EM. State-of-the-art of selective laser melting process: A comprehensive review. J Manuf Syst. 2022;63:250-274. doi: 10.1016/J.JMSY.2022.04.002
  32. Wang X, Kustov S, Van Humbeeck J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Mater (Basel). 2018;11(9):1683. doi: 10.3390/MA11091683
  33. Ryklina E, Polyakova K, Konopatsky A, et al. Effect of original structure on aging-induced microstructure and transformation behavior of Ni-rich NiTi alloy using various aging modes. J Alloys Compd. 2025;1010:177859. doi: 10.1016/J.JALLCOM.2024.177859
  34. Lu HZ, Zhou ZJ, Yang Y, et al. Effect of heat treatment on the microstructure and superelasticity of NiTi alloy via selective laser melting. J Mater Res Technol. 2024;30:1044-1055. doi: 10.1016/J.JMRT.2024.03.148
  35. Saedi S, Turabi AS, Andani MT, Moghaddam NS, Elahinia M, Karaca HE. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater Sci Eng A. 2017;686:1-10. doi: 10.1016/J.MSEA.2017.01.008
  36. Shayesteh Moghaddam N, Saghaian SE, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A. 2018;724:220-230. doi: 10.1016/J.MSEA.2018.03.072
  37. Bimber BA, Hamilton RF, Keist J, Palmer TA. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng A. 2016;674:125-134. doi: 10.1016/J.MSEA.2016.07.059

 

 

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing