Microstructure, phase evolution, and properties of laser powder bed fusion-fabricated Ni50Ti50/Ni-rich NiTi multi-material structures

Multi-material additive manufacturing offers a new approach to creating parts with locally tailored properties. This study focuses on fabricating and characterizing a novel multi-material system composed of equiatomic Nickel (Ni)50Titanium (Ti)50 shape memory alloy–exhibiting shape memory functionality–and Ni-rich NiTi alloy–offering enhanced strength–using laser powder bed fusion (L-PBF). Optimal L-PBF parameters for the Ni-rich NiTi alloy (51.4 at.% Ni) were determined based on density analysis (laser power: 250 W, scan speed: 350 mm/s, hatch distance: 120 μm, layer thickness: 40 μm). Multi-material specimens were printed using a modified L-PBF system with dual powder feeders. Microstructural analysis revealed distinct columnar grains in the as-built Ni50Ti50 zone and melt pool boundaries in the Ni-rich NiTi zone, both evolving after heat treatment (800°C/1 h + 430°C/6 h). Notably, the interface between the two alloys exhibited minimal mixing, with no formation of detrimental secondary phases beyond those intrinsic to each alloy (B19’ martensite in Ni50Ti50; B2 austenite and Ni4Ti3 precipitates in Ni-rich NiTi after aging). Chemical composition analysis confirmed the maintenance of target compositions in their respective zones. Microhardness showed a gradient decrease (from ~220 HV to ~190 HV) from the Ni-rich NiTi zone to the Ni50Ti50 zone. Tensile tests yielded an average ultimate tensile strength of 572.2 ± 57.8 MPa and elongation of 18.8 ± 2.2%. Functional testing demonstrated successful shape recovery upon heating in the Ni50Ti50 region (~5 mm deformation recovered), confirming the preservation of the shape memory effect within the multi-material samples. This work demonstrates the feasibility of L-PBF for producing functional NiTi multi-material structures with combined shape memory and high-strength properties.

- Wagner A, Rogers H, Le A. Exploring new frontiers in multi-material additive manufacturing. IEEE Eng Manag Rev. 2024;53(2):122-133. doi: 10.1109/EMR.2024.3412403
- Nazir A, Gokcekaya O, Masum Billah K, et al. Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater Des. 2023;226:111661. doi: 10.1016/J.MATDES.2023.111661
- Hasanov S, Alkunte S, Rajeshirke M, et al. Review on additive manufacturing of multi-material parts: Progress and challenges. J Manuf Mater Process. 2021;6(1):4. doi: 10.3390/JMMP6010004
- Sherpa BB, Rani R. Advancements in explosive welding process for bimetallic material joining: A review. J Alloy Metall Syst. 2024;6:100078. doi: 10.1016/J.JALMES.2024.100078
- Wang D, Sun X, Jiang Y, Chang X, Yonglei X. Review on the application of stainless-clad bimetallic steel in the marine environment. Anti Corrosion Methods Mater. 2024;71(2):132-142. doi: 10.1108/ACMM-06-2023-2832
- Li G, Jiang W, Guan F, et al. Preparation, interfacial regulation and strengthening of Mg/Al bimetal fabricated by compound casting: A review. J Magnes Alloy. 2023;11(9):3059-3098. doi: 10.1016/J.JMA.2023.09.001
- Kavousi Sisi A, Ozherelkov D, Chernyshikhin S, Pelevin I, Kharitonova N, Gromov A. Functionally graded multi-materials by laser powder bed fusion: A review on experimental studies. Prog Addit Manuf. 2024;10:1843-1912. doi: 10.1007/S40964-024-00739-1
- Nandhakumar R, Venkatesan K. A process parameters review on selective laser melting-based additive manufacturing of single and multi-material: Microstructure, physical properties, tribological, and surface roughness. Mater Today Commun. 2023;35:105538. doi: 10.1016/J.MTCOMM.2023.105538
- Gunasekaran J, Sevvel P, Solomon IJ. Metallic materials fabrication by selective laser melting: A review. Mater Today Proc. 2021;37(2):252-256. doi: 10.1016/J.MATPR.2020.05.162
- Verma A, Kapil A, Klobčar D, Sharma A. A review on multiplicity in multi-material additive manufacturing: Process, capability, scale, and structure. Mater (Basel). 2023;16(15):5246. doi: 10.3390/MA16155246
- Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virt Phys Prototyp. 2021;16(3):347-371. doi: 10.1080/17452759.2021.1928520
- Kolluri AP. Multi-material additive manufacturing and future scope and expected progress. Multi Mater Addit Manuf. 2025;16:373-402. doi: 10.1016/B978-0-443-29228-6.00016-5
- Aldawood FK. A comprehensive review of 4d printing: State of the arts, opportunities, and challenges. Actuators. 2023;12(3):101. doi: 10.3390/ACT12030101
- Ayushi T, Vates UK, Mishra S, Jee Kanu N. Biomimetic 4D printed materials: A State-of-the-art review on concepts, opportunities, and challenges. Mater Today Proc. 2021;47:3313-3319. doi: 10.1016/J.MATPR.2021.07.148
- Ding A, Tang F, Alsberg E. 4D printing: A comprehensive review of technologies, materials, stimuli, design, and emerging applications. Chem Rev. 2025;125:3771. doi: 10.1021/acs.chemrev.4c00070
- Joharji L, Mishra RB, Alam F, Tytov S, Al-Modaf F, El-Atab N. 4D printing: A detailed review of materials, techniques, and applications. Microelectron Eng. 2022;265:111874. doi: 10.1016/J.MEE.2022.111874
- Sinha A, Kumar Rajak D, Shaik NB, et al. A review on 4D printing of Nickel-Titanium smart alloy processing, the effect of major parameters and their biomedical applications. Proc Inst Mech Eng Part E J Process Mech Eng. 2023;0:09544089231154416. doi: 10.1177/09544089231154416
- Wang J, He D, Wu X, Guo X, Zhou Z, Tan Z. Preparation of NiTi shape memory alloy with enhanced mechanical properties using selective laser melting. J Manuf Process. 2025;141:570-579. doi: 10.1016/J.JMAPRO.2025.02.077
- Ma H, Zhao Y, Luo J, et al. Sequential hardening mechanisms in additive-manufactured NiTi shape memory alloys that can significantly delay compressive failure. Mater Today. 2025;85:36-48. doi: 10.1016/J.MATTOD.2025.04.014
- Zhong M, Wu Z, Deng J, Du Y. Anisotropic superelasticity and two-way shape memory effect in selective laser melting fabricated NiTi. J Mater Eng Perform. 2025;1:1-10. doi: 10.1007/S11665-025-11209-2
- Rafiee M, Farahani RD, Therriault D. Multi-material 3D and 4D printing: A survey. Adv Sci (Wwinh). 2020;7(12):1902307. doi: 10.1002/ADVS.201902307
- Ryan KR, Down MP, Banks CE. Future of additive manufacturing: Overview of 4D and 3D printed smart and advanced materials and their applications. Chem Eng J. 2021;403:126162. doi: 10.1016/J.CEJ.2020.126162
- Jiang PF, Nie MH, Teng JZ, et al. Multi-material wire arc additive manufacturing of a bio-inspired heterogeneous layered NiTi/ Nb/Ti6Al4V structure: Microstructural evolutions and mechanical properties. Mater Sci Eng A. 2024;890:145896. doi: 10.1016/J.MSEA.2023.145896
- Jiang P, Nie M, Teng J, Li X, Zhang Z. Wire arc additive manufacturing NiTi/Nb bionic laminated heterogeneous structure: Microsturcture evolution and mechanical properties. Mater Charact. 2024;217:114326. doi: 10.1016/J.MATCHAR.2024.114326
- Jiang PF, Nie MH, Teng JZ, Liu CZ, Zhang ZH. Multi-wire arc additive manufacturing of TC4-Nb-NiTi bionic layered heterogeneous alloy: Microstructure evolution and mechanical properties. Mater Charact. 2023;202:113001. doi: 10.1016/J.MATCHAR.2023.113001
- Jiang PF, Nie MH, Zong XM, et al. Microstructure and mechanical properties of TC4/NiTi bionic gradient heterogeneous alloy prepared by multi-wire arc additive manufacturing. Mater Sci Eng A. 2023;866:144678. doi: 10.1016/J.MSEA.2023.144678
- Jiang P, Nie M, Teng J, Li Q, Zhang Z. Exploration microstructural evolution and wear mechanisms of wire arc additive manufacturing NiTi/Nb bionic composite materials. Tribol Int. 2024;200:110154. doi: 10.1016/J.TRIBOINT.2024.110154
- Ekoi EJ, Degli-Alessandrini G, Zeeshan Mughal M, et al. Investigation of the microstructure and phase evolution across multi-material Ni50.83Ti49.17-AISI 316L alloy interface fabricated using laser powder bed fusion (L-PBF). Mater Des. 2022;221:110947. doi: 10.1016/J.MATDES.2022.110947
- Repnin A, Kim A, Popovich A. Interfacial characterization of selective laser melting of a SS316L/NiTi multi-material with a high-entropy alloy interlayer. Crystals. 2023;13(10):1486. doi: 10.3390/CRYST13101486
- Farber E, Orlov A, Borisov E, et al. TiNi alloy lattice structures with negative poisson’s ratio: Computer simulation and experimental results. Met. 2022;12(9):1476. doi: 10.3390/MET12091476
- Sefene EM. State-of-the-art of selective laser melting process: A comprehensive review. J Manuf Syst. 2022;63:250-274. doi: 10.1016/J.JMSY.2022.04.002
- Wang X, Kustov S, Van Humbeeck J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Mater (Basel). 2018;11(9):1683. doi: 10.3390/MA11091683
- Ryklina E, Polyakova K, Konopatsky A, et al. Effect of original structure on aging-induced microstructure and transformation behavior of Ni-rich NiTi alloy using various aging modes. J Alloys Compd. 2025;1010:177859. doi: 10.1016/J.JALLCOM.2024.177859
- Lu HZ, Zhou ZJ, Yang Y, et al. Effect of heat treatment on the microstructure and superelasticity of NiTi alloy via selective laser melting. J Mater Res Technol. 2024;30:1044-1055. doi: 10.1016/J.JMRT.2024.03.148
- Saedi S, Turabi AS, Andani MT, Moghaddam NS, Elahinia M, Karaca HE. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater Sci Eng A. 2017;686:1-10. doi: 10.1016/J.MSEA.2017.01.008
- Shayesteh Moghaddam N, Saghaian SE, Amerinatanzi A, et al. Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting. Mater Sci Eng A. 2018;724:220-230. doi: 10.1016/J.MSEA.2018.03.072
- Bimber BA, Hamilton RF, Keist J, Palmer TA. Anisotropic microstructure and superelasticity of additive manufactured NiTi alloy bulk builds using laser directed energy deposition. Mater Sci Eng A. 2016;674:125-134. doi: 10.1016/J.MSEA.2016.07.059