AccScience Publishing / MSAM / Volume 4 / Issue 4 / DOI: 10.36922/MSAM025090008
ORIGINAL RESEARCH ARTICLE

Elaboration of complex aluminum nitride parts by binder jetting: Optimization of printing parameters and powder characteristics

Fanny Pruvost1 Sophie Guillemet-Fritsch1* Alexia Mortagne-Coderch1 Yohann Thimont1 Régis Delsol2 Xavier Clausse3 Lionel Presmanes1
Show Less
1 CIRIMAT, Université Toulouse, Toulouse INP, CNRS, 118 Route de Narbonne, CEDEX 9, 31062 Toulouse, France
2 CEA Tech Occitanie, 51 Rue Innovat, Labege, France
3 Toyal Europe, Route de Lescun, Accous, France
MSAM 2025, 4(4), 025090008 https://doi.org/10.36922/MSAM025090008
Received: 25 February 2025 | Accepted: 26 March 2025 | Published online: 9 September 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Aluminum nitride (AlN) is a promising material for heat sinks and power electronics substrates due to its high thermal conductivity, electrical insulation, high mechanical strength, and low thermal expansion. At present, there is a significant demand for the development of ceramics with complex geometries that can achieve previously unmatched properties, and additive manufacturing (AM) techniques are well-suited to meet these challenges. In this study, we chose the binder jetting (BJ) technology and investigated the influence of printing parameters and powder characteristics on AlN part quality and densification. Different strategies were used to enhance densification: employing multimodal powders and adding Yttrium oxide (Y2O3) to improve the shrinkage, and optimizing the printing parameters. Multimodal powder was prepared using two AlN powders (D50 ~14.7 μm and 2.2 μm) at varying fine powder ratios. After sintering at 1900°C, monoclinic yttrium aluminum monoclinic and perovskite yttrium aluminum perovskite phases formed alongside AlN and Y2O3. The highest achieved densification, 64.2%, set a new record for BJ-printed AlN. This study demonstrates the feasibility of BJ for AlN ceramics and underscores the crucial role of powder selection and AM process parameters optimization.

Graphical abstract
Keywords
Ceramics
Additive manufacturing
Aluminum nitride
Binder jetting
Multimodal mixture
Funding
The PhD scholarship was used for the work of this research and the author who received it was Fanny Pruvost. This research was funded by the “Plateformes Régionales de Recherche et d’Innovation (PRRI)” program of the Occitanie Region under the project “3D Camp—3D Ceramic Additive Manufacturing & Multimaterials Platform.”
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Klocke F. Modern approaches for the production of ceramics components. J Eur Ceram Soc. 1997;17:457-465. doi: 10.1016/S0955-2219(96)00163-X
  2. Kenfaui D, Valdez-Nava Z, Laudebat L, et al. Innovative ceramic-matrix composite substrates with tunable electrical conductivity for high-power applications. Sci Technol Adv Mater. 2022;23:735-751. doi: 10.1080/14686996.2022.2137695
  3. Kenfaui D, Guillemet-Fritsch S, Valdez-Nava Z, et al. Tuning electrical conductivity in AlN-based ceramics by incorporating graphene. J Eur Ceram Soc. 2023;43(5):1887-1896. doi: 10.1016/j.jeurceramsoc.2022.12.039
  4. Dinwiddie RB, Whittaker AJ, Onn GG. Thermal conductivity, heat capacity, and thermal diffusivity of selected commercial AlN substrates. Int J Thermophys. 1989;10:1075-1084. doi: 10.1007/BF00503175
  5. Nakano H, Watari K, Hayashi H, Urabe K. Microstructural characterization of high-thermal-conductivity aluminum nitride ceramic. J Am Ceram Soc. 2002;85(12):3093-3095. doi: 10.1111/j.1151-2916.2002.tb00587.x
  6. Du X, Qin M, Sun Y, Yuan Z, Yang B, Qu X. Structure and thermal conductivity of powder injection molded AlN ceramic. Adv Powder Technol. 2010;21:431-434. doi: 10.1016/j.apt.2010.01.001
  7. Sheppard LM. Aluminum nitride: A versatile but challenging material. J Am Ceram Soc Bull. 1990;69:1801-1812.
  8. Baik Y, Drew RA. Aluminum Nitride: Processing and Applications. Key Eng Mater. 1996;122-124:553. doi: 10.4028/www.scientific.net/KEM.122-124.553s
  9. Kume S, Yasuoka M, Lee SK, Kan A, Ogawa H, Watari K. Dielectric and thermal properties of AlN ceramics. J Eur Ceram Soc. 2007;27:2967-2971. doi: 10.1016/j.jeurceramsoc.2006.11.023
  10. Watari K, Ishizaki K, Tsuchiya F. Phonon scattering and thermal conduction mechanisms of sintered aluminium nitride ceramics. J Mater Sci. 1993;28:3709-3714. doi: 10.1007/BF00353168
  11. Diaz-Moreno CA, Lin Y, Hurtado-Macias A, et al. Binder jetting additive manufacturing of aluminum nitride components. Ceram Int. 2019;45:13620-13627. doi: 10.1016/j.ceramint.2019.03.187
  12. Deckers J, Vleugels J, Kruth JP. Additive manufacturing of ceramics: A review. J Ceram Sci Tech. 2014;5:245-260. doi: 10.4416/JCST2014-00032
  13. Ziaee M, Crane NB. Binder jetting: A review of process, materials, and methods. Addit Manuf. 2019;28:781-801. doi: 10.1016/j.addma.2019.05.031
  14. Liang D, Rujie H, Fang D. Development of additive manufacturing of ceramics. J Adv Ceram. 2017;38:231-247.
  15. Rauchenecker J, Rabitsch J, Schwentenwein M, Konegger T. Additive manufacturing of aluminum nitride ceramics with high thermal conductivity via digital light processing. Open Ceram. 2022;9:100215. doi: 10.1016/j.oceram.2021.100215
  16. Lin L, Wu H, Xu Y, Lin K, Zou W, Wu S. Fabrication of dense aluminum nitride ceramics via digital light processing-based stereolithography. Mater Chem Phys. 2020;249:122969. doi: 10.1016/j.oceram.2021.100215
  17. Qin M, Lu H, Wu H, et al. Powder injection molding of complex-shaped aluminium nitride ceramic with high thermal conductivity. J Eur Ceram Soc. 2019;39:952-956. doi: 10.1016/j.jeurceramsoc.2018.11.037
  18. Belmonte M, Lopez-Navarrete G, Osendi MI, Miranzo P. Heat dissipation in 3D printed cellular aluminum nitride structures. J Eur Ceram Soc. 2021;41(4):2407-2414. doi: 10.1016/j.jeurceramsoc.2020.12.005
  19. Cima MJ, Sachs EM. Three-Dimensional Printing: Forms, Materials and Performance. Texas: SFF Symposium; 1991. Available from: https://hdl.handle.net/2152/64335 [Last accesed on 2025 Apr 15]. doi: 10.15781/T2DB7W70S
  20. Sachs E, Cima M, Cornie J. Three-dimensional printing: Rapid tooling and prototypes directly from a CAD model. Ann CIRP. 1990;39:201-204. doi: 10.1016/S0007-8506(07)61035-X
  21. Sachs EM, Haggerty JS, Cima MJ, Williams PA. United States Patent 5.204.055: Three-Dimensional Printing Techniques; 1993. Available from: https://patents.google.com/patent/ US5204055A/en [Last accesed on 2025 Apr 15].
  22. Du W, Ren X, Ma C, Pei Z. Binder jetting additive manufacturing of ceramics: A literature review. ASME 2017 International Mechanical Engineering Congress and Exposition; 2017. p. 1-12. doi: 10.1115/IMECE2017-70344
  23. Zocca A, Colombo P, Gomes CM, Günster J. Additive manufacturing of ceramics: Issues, potentialities, and opportunities. J Am Ceram Soc. 2015;98:1983-2001. doi: 10.1111/jace.13700
  24. Chen Q, Juste E, Lasgorceix M, et al. Post-infiltration to improve the density of binder jetting ceramic parts. J Eur Ceram Soc. 2022;42:7134-7148. doi: 10.1016/j.jeurceramsoc.2022.08.005
  25. Baux A, Goillot A, Jacques S, et al. Synthesis and properties of macroporous SiC ceramics synthesized by 3D printing and chemical vapor infiltration/deposition. J Eur Ceram Soc. 2020;40:2834-2854. doi: 10.1016/j.jeurceramsoc.2020.03.001
  26. Zhang W, Melcher R, Travitzky N, Bordia RK, Greil P. Three-dimensional printing of complex-shaped alumina/ glass composites. Adv Eng Mater. 2009;11:1039-1043. doi: 10.1002/adem.200900213
  27. Moghadasi M, Miao G, Li M, Pei Z, Ma C. Combining powder bed compaction and nanopowders to improve density in ceramic binder jetting additive manufacturing. Ceram Int. 2021;47:35348-35355. doi: 10.1016/j.ceramint.2021.09.077
  28. Du W, Singh M, Singh D. Binder jetting additive manufacturing of silicon carbide ceramics: Development of bimodal powder feedstocks by modeling and experimental methods. Ceram Int. 2020;46:19701-19707. doi: 10.1016/j.ceramint.2020.04.098
  29. Gonzalez JA, Mireles J, Lin Y, Wicker RB. Characterization of ceramic components fabricated using binder jetting additive manufacturing technology. Ceram Int. 2016;42:10559-10564. doi: 10.1016/j.ceramint.2016.03.079
  30. Mohammad Akib Y, Marzbanrad E, Ahmed F. Molecular dynamics-based two-dimensional simulation of powder bed additive manufacturing process for unimodal and bimodal systems. J Manuf Mater Process. 2025;9(1):1-12. doi: 10.3390/jmmp9010009
  31. Liu, J. United States Patent 7.070.734: Blended Powder Solid- Supersolidus Liquid Phase Sintering; 2004. Available from: https://patents.google.com/patent/US7070734B2/en [Last accesed on 2025 Apr 15].
  32. Haferkamp L, Liechti S, Spierings A, Wegener K. Effect of bimodal powder blends on part density and melt pool fluctuation in laser powder bed fusion. Prog Add Manuf. 2021;6:407-416. doi: 10.1007/s40964-021-00179-1
  33. Yun Bai GW, Williams CB. Effect of Bimodal Powder Mixture On Powder Packing Density and Sintered Density in Binder Jetting of Metals. In: Annual International Solid Freeform Fabrication Symposium; 2015. Available from: https://hdl.handle.net/2152/89376 [Last accesed on 2025 Apr 15].
  34. Clares AP, Gao Y, Stebbins R, Van Suin AC, Manogharan G. Increasing density and mechanical performance of binder jetting processing through bimodal particle size distribution. Mater Sci Add Manuf. 2022;1(3):20. doi: 10.18063/msam.v1i3.20
  35. Ye X, Li Y, Ai Y, Nie Y. Novel powder packing theory with bimodal particle size distribution-application in superalloy. Adv Powder Technol. 2018;29:2280-2287. doi: 10.1016/j.apt.2018.06.012
  36. Du W, Ren X, Chen Y, Ma C, Radovic M, Pei Z. Model Guided Mixing of Ceramic Powders with Graded Particle Sizes in Binder Jetting Additive Manufacturing. ASME 2018 13th International Manufacturing Science and Engineering Conference. College Station, TX: American Society of Mechanical Engineers; 2018. p. 1-9. doi: 10.1115/MSEC2018-6651
  37. Chasserio N, Guillemet-Fritsch S, Lebey T, Dagdag S. Ceramic substrates for high-temperature electronic integration. J Electron Mater. 2008;38:164-174. doi: 10.1007/s11664-008-0571-8
  38. Mrdak M, Lacnjevac C, Rakin M, Janckovic D, Veljic D, Bajic D. Characterization of deposited plasma spray NiCrAlCoY2O3 coating layers on AlMg1 alloy substrates. Zast Mater. 2021;62:34-41. doi: 10.5937/zasmat2101034M
  39. European Pharmacopoeia. 8th ed. Strasbourg: Council of Europe; 2014. Available from: https://books.google. fr/books?id=ze7DngEACAAJ or https://fr.scribd.com/ document/520931326/European-Pharmacopoeia-8th- Edition [Last accesed on 2025 Apr 15].
  40. Moghadasi M, Miao G, Li M, Pei Z, Ma C. Combining powder bed compaction and nanopowders to improve density in ceramic binder jetting additive manufacturing. Ceram Int. 2021;47:35348-35355. doi: 10.1016/j.ceramint.2021.09.077
  41. Li M, Wei X, Pei Z, Ma C. Binder jetting additive manufacturing: Observations of compaction-induced powder bed surface defects. Manuf Lett. 2021;28:50-53. doi: 10.1016/j.mfglet.2021.04.003
Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing