AccScience Publishing / MSAM / Volume 3 / Issue 3 / DOI: 10.36922/msam.4158
ORIGINAL RESEARCH ARTICLE

Wide-angle broadband metamaterial absorber with carbon black-carbonyl iron/polylactic acid composites fabricated by fused filament fabrication

Fei Wang1,2 Qianfeng Zhou1,2 Hongsheng Liu1,2 Pengfei Fang1,2 Kaiyong Jiang1,2 Peifeng Li3*
Show Less
1 Fujian Key Laboratory of Special Energy Manufacturing, Huaqiao University, Xiamen, Fujian, China
2 Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University, Xiamen, Fujian, China
3 James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, United Kingdom
Submitted: 6 July 2024 | Accepted: 26 August 2024 | Published: 27 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

A complex composite structure comprising periodic stepped square hole (SSH) units was designed to achieve wide-angle broadband microwave absorption. The SSH structure serves as a metamaterial absorber and was fabricated with carbon black, carbonyl iron powder, and polylactic acid composite by fused filament fabrication 3D printing. Only 50 wt% addition of loss material was required in the composite filament. Electromagnetic simulation was developed to investigate the effect of geometric parameters of the SSH structure on the microwave absorption performance, using the measured complex permittivity and permeability of the composite as the input. The geometric parameters were optimized for absorption reflection loss and bandwidth in the electromagnetic simulation. The simulation revealed that the optimal SSH structure with a height of 18 mm can achieve a –10 dB absorption bandwidth of 14.032 GHz in the frequency range of 2 – 18 GHz with a reflectivity peak (−45.74 dB) at 15.056 GHz. The optimal structure can sustain strong absorption and broadband performance with incident angles of 0 – 50° for both transverse electric polarization and transverse magnetic polarization. The simulation results were verified by reflectivity experiments on the SSH structure with optimal geometric parameters. This work provides an effective and promising approach for the practical application of strong broadband and wide-angle microwave absorption.

Keywords
Metamaterial absorber
3D printing
Stepped square hole
Wide-angle absorption
Broadband absorption
Funding
This research was supported by the Xiamen Science and Technology Plan Project (3502Z20163010), Enterprise Entrusted Project (605-54321070), Fujian Provincial Science and Technology Planning Project (2019H6016, 2019H0014), and the Fujian Province Industry-University Cooperation Plan (2023H6015).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Abdulkarim YI, Mohanty A, Acharya OP, et al. A review on metamaterial absorbers: Microwave to optical. Front Phys. 2022;10:893791. doi: 10.3389/fphy.2022.893791
  2. Cheng Y, Zhu W, Lu X, Wang C. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding. Compos Commun. 2021;27:100823-100833. doi: 10.1016/j.coco.2021.100823
  3. Pang H, Duan Y, Huang L, et al. Research advances in composition, structure and mechanisms of microwave absorbing materials. Compos B Eng. 2021;224:109173-109214. doi: 10.1016/j.compositesb.2021.109173
  4. Yu P, Lin Z, Yu J. Mechanical, thermal, and dielectric properties of SiCf/SiC composites reinforced with electrospun SiC fibers by PIP. J Eur Ceram Soc. 2021;41(14):6859-6868. doi: 10.1016/j.jeurceramsoc.2021.07.020
  5. Zhou W, Long L, Bu GB, Li Y. Mechanical and microwave-absorption properties of Si3N4 Ceramic with SiCNFs fillers. Adv Eng Mater. 2019;21(5):1800665-1800670. doi: 10.1002/adem.201800665
  6. Lei L, Yao Z, Zhou J, Wei B, Fan H. 3D printing of carbon black/polypropylene Composites with excellent microwave absorption performance. Compos Sci Technol. 2020;200:108479-108487. doi: 10.1016/j.compscitech.2020.108479
  7. Zuo YX, Su XR, Li XW, et al. Multimaterial 3D-printing of graphene/Li0.35Zn0.3Fe2.35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth. Carbon. 2020;167:62-74. doi: 10.1016/j.carbon.2020.05.071
  8. Gunwant D, Vedrtnam A. Microwave absorbing properties of carbon fiber based materials: A review and prospective. J Alloys Compd. 2021;881:160572-160594. doi: 10.1016/j.jallcom.2021.160572
  9. Zheng J, Zhou ZX, Zhu LH, Chen QH, Hong MC, Fu HQ. Room temperature self-healing CIP/PDA/ MWCNTs composites based on imine reversible covalent bond as microwave absorber. React Funct Polym. 2022;172:105179-105190. doi: 10.1016/j.reactfunctpolym.2022.105179
  10. Houbi A, Aldashevich ZA, Atassi Y, Telmanovna ZB, Saule M, Kubanych K. Microwave absorbing properties of ferrites and their composites: A review. J Magn Magn Mater. 2021;529:167839-167855. doi: 10.1016/j.jmmm.2021.167839
  11. Qian Y, Yao ZJ, Lin HY, Zhou JT. Mechanical and microwave absorption properties of 3D-printed Li0.44Zn0.2Fe2.36O4/ polylactic acid composites using fused deposition modeling. J Mater Sci Mater Electron. 2018;29(22):19296-19307. doi: 10.1007/s10854-018-0056-3.
  12. Ning M, Li J, Kuang B, et al. One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption. Appl Surf Sci. 2018;447:244-253. doi: 10.1016/j.apsusc.2018.03.242
  13. Haihua W, Zhenglang H, Yutian L, Peng Q, Li L, Jianxin Z. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling. Acta Mater Compos Sin. 2022;39(1):158-168. doi: 10.13801/j.cnki.fhclxb.20210311.003
  14. Huang Q, Wang G, Zhou M, Zheng J, Tang S, Ji G. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture. J Mater Sci Technol. 2022;108:90-101. doi: 10.1016/j.jmst.2021.07.055
  15. Li K, Lu H, Bi M, et al. Multi-band polarization-insensitive metamaterial absorber for microwave based on slotted structure and magnetic rubber. Polymers (Basel). 2022;14:1576.
  16. Tong LV, Chenwei Z, Jia L, Xiangyu MA, Yuanxun G, Hongjie Z. Research progress in metamaterial absorber. Acta Mater Compos Sin. 2021;38(1):25-35. doi: 10.13801/j.cnki.fhclxb.20200921.004
  17. Qu S, Hou Y, Sheng P. Conceptual-based design of an ultrabroadband microwave metamaterial absorber. Proc Natl Acad Sci U S A. 2021;118(36):e2110490118. doi: 10.1073/pnas.2110490118
  18. Zhou P, Wang L, Zhang G, et al. A stretchable metamaterial absorber with deformation compensation design at microwave frequencies. IEEE Trans Antennas Propag. 2019;67(1):291-297. doi: 10.1109/TAP.2018.2877300
  19. Deng R, Li M, Muneer B, et al. Theoretical analysis and design of ultrathin broadband optically transparent microwave metamaterial absorbers. Materials (Basel). 2018;11(1):107. doi: 10.3390/ma11010107
  20. Chen X, Wu Z, Zhang Z, Zou Y. Ultra-broadband and wide-angle absorption based on 3D-printed pyramid. Opt Laser Technol. 2020;124:105972-105977. doi: 10.1016/j.optlastec.2019.105972
  21. Pei Z, Xu Y, Wei F, Liu T, Su D. Electromagnetic property of a novel gradient honeycomb composite fabricated by 3D forming. J Magn Magn Mater. 2020;493:165742. doi: 10.1016/j.jmmm.2019.165742
  22. Feng L, Li W, Wang Y. Broadband electromagnetic wave absorbing metamaterial based on FeSiAl alloy. J Magn Magn Mater. 2022;541:168510-168516. doi: 10.1016/j.jmmm.2021.168510
  23. Yin L, Tian X, Shang Z, Li D. Ultra-broadband metamaterial absorber with graphene composites fabricated by 3D printing. Mater Lett. 2019;239:132-135. doi: 10.1016/j.matlet.2018.12.087.
  24. Tian X, Shang Z, Yin L, Li D. 3D printing of graphene metamaterial absorbing structure. J Aeronautical Manuf Technol. 2019;62(5):14-22. doi: 10.16080/j.issn1671-833x.2019.05.014
  25. Begaud X, Lepage AC, Varault S, Soiron M, Barka A. Ultra-wideband and wide-Angle microwave metamaterial absorber. Materials (Basel). 2018;11(10):2045. doi: 10.3390/ma11102045
  26. Wang Y, Wang C, Zhai Y, et al. LPDA-inspired material-geometry joint wide-angle broadband absorption based on metapyramid. Mater Des. 2023;235:112397. doi: 10.1016/j.matdes.2023.112397
  27. Xu HX, Wang M, Hu G, et al. Adaptable invisibility management using kirigami-inspired transformable metamaterials. Research (Wash D C). 2021;2021:9806789. doi: 10.34133/2021/9806789
  28. Xu HX, Wang GM, Qi MQ, Liang JG, Gong JQ, Xu ZM. Triple-band polarization-insensitive wide-angle ultra-miniature metamaterial transmission line absorber. Phys Rev B. 2012;86(20):205104. doi: 10.1103/physrevb.86.205104
  29. Wang Y, Xu HX, Wang C, Luo H, Wang S, Wang M. Multimode‐assisted broadband impedance‐gradient thin metamaterial absorber. Adv Photonics Res. 2022;3(10):2200063. doi: 10.1002/adpr.202200063
  30. Tan R, Zhou F, Liu Y, et al. 3D printed propeller-like metamaterial for wide-angle and broadband microwave absorption. J Mater Sci Technol. 2023;144:45-53. doi: 10.1016/j.jmst.2022.10.012
  31. Tasolamprou AC, Mentzaki D, Viskadourakis Z, Economou EN, Kafesaki M, Kenanakis G. Flexible 3D printed conductive metamaterial units for electromagnetic applications in microwaves. Materials (Basel). 2020;13(17):3879. doi: 10.3390/ma13173879
  32. Ren J, Yin JY. 3D-printed low-cost dielectric-resonator-based ultra-broadband microwave absorber using carbon-loaded acrylonitrile butadiene styrene polymer. Materials (Basel). 2018;11(7):1249. doi: 10.3390/ma11071249
  33. Huang H, Wang W, Hua M, et al. Broadband radar absorbing characteristic based on periodic hollow truncated cone structure. Phys B Condensed Matter. 2020;595:412368. doi: 10.1016/j.physb.2020.412368
  34. Zhou D, Huang X, Du Z. Analysis and design of multilayered broadband radar absorbing metamaterial using the 3-D printing technology-based method. IEEE Antennas Wirel Propag Lett. 2017;16:133-136. doi: 10.1109/LAWP.2016.2560904
  35. Zhang Z, Wang F, Zhang J, Li P, Jiang K. Ultra-broadband and wide-angle metamaterial absorber with carbon black/ carbonyl iron composites fabricated by direct-ink-write 3D printing. Adv Eng Mater. 2023;25(6):2201236. doi: 10.1002/adem.202201236
  36. Zhang K, Chen J, Yue S, Zhang H, Meng C, Wang J. Facile synthesis of core-shell CI/SiO2 decorated RGO sheets composite for excellent electromagnetic wave absorption Performance covering the whole X-band. Compos Part A Appl Sci Manuf. 2020;130:105755. doi: 10.1016/j.compositesa.2019.105755
  37. Duan Y, Liang Q, Yang Z, et al. A wide-angle broadband electromagnetic absorbing metastructure using 3D printing technology. Mater Des. 2021;208:109900. doi: 10.1016/j.matdes.2021.109900
  38. Wang F, Zhou Q, Zhang Z, Gu Y, Zhang J, Jiang K. Microwave absorption properties of carbon black-carbonyl iron/polylactic acid composite filament for fused deposition modeling. Materials (Basel). 2022;15(15):5455-5468. doi: 10.3390/ma15155455
  39. Ruiz-Perez F, López-Estrada SM, Tolentino-Hernández RV, Caballero-Briones F. Carbon-based radar absorbing materials: A critical review. J Sci Adv Mater Dev. 2022;7(3):100454-100473. doi: 10.1016/j.jsamd.2022.100454
  40. Li N, Huang G, Li Y, Xiao H, Feng Q, Hu N, Fu S. Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces. 2017;9:2973-2983. doi: 10.1021/acsami.6b13142
  41. Wang F, Zhou Q, Zhang Z, He P, Zhang J, Jiang K. Microwave absorption performance of carbon black/polylactic acid composite for fused filament fabrication. Appl Sci. 2022;12:12747. doi: 10.3390/app122412747
  42. Su X, Wang J, Liu T, et al. Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement. Adv Funct Mater. 2024;2403397. doi: 10.1002/adfm.202403397
  43. Su X, Wang J, Han M, et al. Broadband electromagnetic wave absorption using pure carbon aerogel by synergistically modulating propagation path and carbonization degree. J Colloid Interface Sci. 2023;652:780-788. doi: 10.1016/j.jcis.2023.08.113
  44. Wang W, Deng X, Liu D, et al. Broadband radar-absorbing performance of square-hole structure. Adv Compos Hybrid Mater. 2022;5(1):525-535. doi: 10.1007/s42114-021-00376-0

 

 

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing