AccScience Publishing / MI / Online First / DOI: 10.36922/mi.2666
Cite this article
73
Download
984
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
ORIGINAL RESEARCH ARTICLE

An ATP-free packaging of T4 DNA

Seiko Hara1*
Show Less
1 Department of Comparative Culture, School of International Liberal Arts, Miyazaki International University, 1405 Kano, Kiyotake-cho, Miyazaki-Shi, Miyazaki, Japan
MI 2024, 1(1), 68–80; https://doi.org/10.36922/mi.2666
Submitted: 7 January 2024 | Accepted: 27 February 2024 | Published: 19 March 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Packaging of viral DNA into a capsid with liquid crystalline density is a crucial step in viral reproduction. DNA packaging with an adenosine triphosphate (ATP)-fueled molecular motor is an established viral DNA packaging mechanism system. On the other hand, DNA is compacted by the conformational change attributable to multivalent cations exclusively at valences higher than three. The conformational change of DNA was not considered as a mechanism of DNA packaging of viruses. Here, T4 DNA, ejected from a capsid in the ambient concentration of phosphate corresponding to the intra-cell concentration, is packaged into the capsid when the phosphate concentration decreases to the extra-cell concentration in coexistence with divalent cations, that is, Ca2+ and Mg2+. The compaction and packaging processes coincide with the conformational change of DNA. Divalent cations can compact T4 DNA when the counter anion is phosphate. The DNA-packaged and re-generated virions showed equivalent infective ability with the original populations. Fluorescent microscopy distinguished the conformational changes of DNA between compact forms and coil forms. Packaged or unpackaged DNA was confirmed enzymatically. Plaque-forming unit (Pfu) was used as the measure of infectious ability of virions. The concentration of ATP was measured by the luminometric method. The packaging process was proceeded in picomolar or lower concentration of ATP. This series of procedures may constitute a new ATP-free or low-ATP approach to packaging viral DNA with DNA conformational change underpinning the process. The results from this study may disclose an undiscovered facet of T4 life cycle.

Keywords
Divalent cation
Calcium
Phosphate
Compaction
Conformational change
Funding
The research was supported by the Cooperative Program (No. 119, 134, 2015) of Atmosphere and Ocean Research Institute, the University of Tokyo to S.H.
Conflict of interest
The author declares no conflicts of interest.
References
  1. Birge EA. Bacterial and Bacteriophage Genetics. New York, USA: Springer Science-Business Media Inc.; 2010. doi: 10.1007/0-387-31489-X

 

  1. Gelbart WM, Knobler CM. Virology. Pressurized viruses. Science. 2009;323:1682-1683. doi: 10.1126/science.1170645

 

  1. Casjens S. The DNA-packaging nanomotor of tailed bacteriophages. Nat Rev Microbiol. 2011;9:647-657. doi: 10.1038/nrmicro2632

 

  1. Zhang H, Schwartz C, De Donatis GM, Guo P. “Push through one-way valve’’ mechanism of viral DNA packaging. Adv Virus Res. 2012;83:415-465. doi: 10.1016/B978-0-12-394438-2.00009-8

 

  1. Kottadiel VI, Rao VB, Chemla YR. The dynamic pause-unpackaging state, an off-translocation recovery state of a DNA packaging motor from bacteriophage T4. Proc Nat Acad Sci. 2012;109:20000-20005. doi: 10.1073/pnas.1209214109

 

  1. Molineux IJ, Panja D. Popping the cork: Mechanisms of phage genome ejection. Nat Rev Microbiol. 2013;11:194-204. doi: 10.1038/nrmicro2988

 

  1. Effantin G, Boulanger P, Neumann E, Letellier L, Conway JF. Bacteriophage T5 structure reveals similarities with HK97 and T4 suggesting evolutionary relationships. J Mol Biol. 2006;361:993-1002. doi: 10.1016/j.jmb.2006.06.081

 

  1. Chow TY, Lin YT, Kuo TT. Stability of phage Xp12. Bot Bull Acad Sinica. 1971;12:57-65.

 

  1. Kuo TT, Huang TC, Wu RY, Chen CP. Specific dissociation of phage Xpl2 by sodium citrate. J Gen Virol. 1971;10:199-202. doi: 10.1099/0022-1317-10-2-199

 

  1. Shafia F, Thompson TL. Calcium ion requirement for proliferation of bacteriophage PHI mu-4. J Bacteriol. 1964;88:293-296. doi: 10.1128/jb.88.2.293-296.1964

 

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 4th ed. New York, USA: Garland Publishing, Inc.; 2002. doi: 10.1201/9780203833445

 

  1. Clapham DE. Calcium signaling. Cell. 2007;131:1047-1058. doi: 10.1016/j.cell.2007.11.028

 

  1. Ukuku DO, Sapers GM, Fett WF. ATP bioluminescence assay for estimation of microbial populations of fresh-cut melon. J Food Protect. 2005;68:2427-2432. doi: 10.4315/0362-028X-68.11.2427

 

  1. Gosule LC, Schellman JA. Compact form of DNA induced by spermidine. Nature. 1976;259:333-335. doi: 10.1038/259333a0

 

  1. Yoshikawa K, Matsuzawa Y. Discrete phase transition of giant DNA dynamics of globule formation from a single molecular chain. Phys D Nonlinear Phenomena. 1995;84:220-227. doi: 10.1016/0167-2789(95)00020-5

 

  1. Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 2001.

 

  1. Mason PW, Carbone DP, Cushman RA, Waggoner AS. The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis. J Biol Chem. 1981;265:1861-1866. doi: 10.1016/S0021-9258(19)69886-8

 

  1. Milo R, Phillips R. Cell Biology by the Numbers. New York, USA: Garland Science; 2015. doi: 10.1201/9780429258770

 

  1. Anderson S. Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucleic Acids Res. 1981;9:3015-3027. doi: 10.1093/nar/9.13.3015

 

  1. Steward GF, Culley AI. Extraction and purification of nucleic acids from viruses. In: Manual of Aquatic Viral Ecology. Ch. 16. United States: ASLO; 2010. p. 154-165. doi: 10.4319/mave.2010.978-0-9845591-0-7.154

 

  1. Yoshinaga N, Yoshikawa K, Kidoaki S. Multiscaling in a long semiflexible polymer chain in two dimensions. J Chem Phys. 2002;116:9926-9929. doi: 10.1063/1.1475759

 

  1. Zinchenko AA, Sergeyev VG, Murata S, Yoshikawa K. Controlling the intrachain segregation on a single DNA molecule. J Am Chem Soc. 2003;125:4414-4415. doi: 10.1021/ja028804x

 

  1. Tang J, Du N, Doyle PS. Compression and self-entanglement of single DNA molecules under uniform electric field. Proc Nat Acad Sci. 2011;108(39):16153-16158. doi: 10.1073/pnas.1105547108

 

  1. Renner CB, Doyle PS. Stretching self-entangled DNA molecules in elongational fields. Soft Matter. 2015;11:3105-3114. doi: 10.1039/C4SM02738H

 

  1. Tongu C, Kenmotsu T, Yoshikawa Y, Zinchenko A, Chen N, Yoshikawa K. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation. J Chem Phys. 2016;144:205101. doi: 10.1063/1.4950749

 

  1. Grayson P, Han L, Winther T, Phillips R. Real-time observations of single bacteriophage lambda DNA ejections in vitro. Proc Nat Acad Sci U S A. 2007;104:14652-14657. doi: 10.1073/pnas.0703274104

 

  1. Li D, Liu T, Zuo X, Li T, Qiu X, Evilevitch A. Ionic switch controls the DNA state in phage λ. Nucleic Acids Res. 2015;43:6348-6358. doi: 10.1093/nar/gkv611

 

  1. Leforestier A, Livolant F. The bacteriophage genome undergoes a succession of intracapsid phase transitions upon DNA ejection. J Mol Biol. 2010;396:384-395. doi: 10.1016/j.jmb.2009.11.047

 

  1. Liu T, Sae-Uenga U, Lia D, Landerb GC, Zuoc X, Jönssond B, et al. Solid-to-fluid-like DNA transition in viruses facilitates infection. Proc Nat Acad Sci. 2014;111:14675-14680. doi: 10.1073/pnas.1321637111

 

  1. Evilevitch A, Lavelle L, Knobler CM, Raspaud E, Gelbart WM. Osmotic pressure inhibition of DNA ejection from phage. Proc Nat Acad Sci. 2008;100:9292-9295. doi: 10.1073/pnas.1233721100

 

  1. Fuller DN, Rickgauer JP, Jardine PJ, Grimes S, Anderson DL, Smith DE. Ionic effects on viral DNA packaging and portal motor function in bacteriophage phi29. Proc Nat Acad Sci. 2007;104:11245-11250. doi: 10.1073/pnas.0701323104

 

  1. Aksyuk AA, Rossmann MG. Bacteriophage assembly. Viruses. 2011;3:172-203. doi: 10.3390/v3030172

 

  1. Arisaka F, Yap ML, Kanamaru S, Rossmann MG. Molecular assembly and structure of the bacteriophage T4 tail. Biophys Rev. 2016;8:385-396. doi: 10.1007/s12551-016-0230-x

 

  1. Bryson AL, Hwang Y, Sherrill-Mix S, et al. Covalent modification of bacteriophage T4 DNA inhibits CRISPR-cas9. mBio. 2015;6(3):e00648. doi: 10.1128/mBio.00648-15

 

  1. Price PA. Characterization of Ca++ and Mg++ binding to bovine pancreatic deoxyribonuclease A. J Biol Chem. 1972;247:2895-2899. doi: 10.1016/S0021-9258(19)45295-2

 

  1. Price PA. The essential role of Ca2+ in the activity of bovine pancreatic deoxyribonuclease. J Biol Chem. 1975;250:1981-1986. doi: 10.1016/S0021-9258(19)41672-4

 

  1. Vafabakhsh R, Kondabagil K, Earnest T, Lee KS, Zhang Z, Dai L, et al. Single-molecule packaging initiation in real time by a viral DNA packaging machine from bacteriophage T4. Proc Nat Acad Sci U S A. 2014;111:15096-15101. doi: 10.1073/pnas.1407235111

 

  1. Zinchenko A. DNA conformational behavior and compaction in biomimetic systems: Toward better understanding of DNA packaging in cell. Adv Colloid Interface Sci. 2016;232:70-79. doi: 10.1016/j.cis.2016.02.005

 

  1. Todd BA, Parsegian VA, Shirahata A, Thomas TJ, Rau DC. Attractive forces between cation condensed DNA double helices. Biophys J. 2008;94:4775-4782. doi: 10.1529/biophysj.107.127332

 

  1. Vranjes J, Kono M. Energy in density gradient. Phys Plasmas. 2015;22:012105. doi: 10.1063/1.4906050

 

  1. Black LW, Rao VB. Structure, assembly, and DNA packaging of the bacteriophage T4 head. Adv Virus Res. 2012;82:119-153. doi: 10.1016/B978-0-12-394621-8.00018-2

 

  1. Black LW, Peng G. Mechanistic coupling of bacteriophage T4 DNA packaging to components of the replication-dependent late transcription machinery. J Biol Chem. 2006;281:25635-25643. doi: 10.1074/jbc.M602093200

 

  1. Morita M, Fujisawa H. How do bacteriophages recognize and package their own genome DNA? Prot Nucleic Acid Enzy. 1997;42:609-618.

 

  1. Kutter E, Kellenberger E, Carson K, et al. Effects of bacterial growth conditions and physiology on T4 infection. In: Karam JD, Drake JW, editor. Molecular Biology of Bacteriophage T4. Washington, DC: ASM Press; 1994.
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing