The role of copper and core gene network controlling cuproptosis in infection immunity, diagnosis, and treatment
Copper is an essential trace element in living organisms and is involved in a variety of biochemical processes, including cellular respiration, iron metabolism, and nerve function. In recent years, research has shown that copper is not only essential for fundamental physiological functions but also plays an important role in immune response and pathological states. In particular, copper death (cuproptosis), a recently discovered cell death pathway that is strongly associated with copper overload, is emerging as an appealing area of immune research. Excess copper can induce cell death as a result of copper ions directly binding to sulfide proteins in the tricarboxylic acid cycle. In-depth studies of copper metabolism and its related mechanisms will contribute to developing new diagnostic tools and therapeutic strategies and providing new ideas and approaches for tackling infections and other related diseases. This review summarizes the newest understanding of copper death and the latest advancements in disease diagnosis and treatment, providing a valuable reference for the follow-up research on tuberculosis-related vaccines and copper in immunity.
- Tian C, Hromatka BS, Kiefer AK, et al. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat Commun. 2017;8(1):599. doi: 10.1038/s41467-017-00257-5
- Andersson JA, Sha J, Kirtley ML, et al. Combating multidrug-resistant pathogens with host-directed nonantibiotic therapeutics. Antimicrob Agents Chemother. 2018;62(1). doi: 10.1128/AAC.01943-17
- Ashkani O, Tavighi MR, Karamimoghadam M, Moradi M, Bodaghi M, Rezayat M. Influence of aluminum and copper on mechanical properties of biocompatible Ti-mo alloys: A simulation-based investigation. Micromachines (Basel). 2023;14(5):1081. doi: 10.3390/mi14051081
- Huang X, Li Q, Yun S, et al. Zn(II) enhances the antimicrobial effect of chloroxine and structural analogues against drug-resistant ESKAPE pathogens in vitro. Biochem Pharmacol. 2024;229:116482. doi: 10.1016/j.bcp.2024.116482
- Hager S, Korbula K, Bielec B, et al. The thiosemicarbazone Me2NNMe2 induces paraptosis by disrupting the ER thiol redox homeostasis based on protein disulfide isomerase inhibition. Cell Death Dis. 2018;9(11):1052. doi: 10.1038/s41419-018-1102-z
- Wang M, Huang H, Ma X, Huang C, Peng X. Copper metal-organic framework embedded carboxymethyl chitosan-g-glutathione/polyacrylamide hydrogels for killing bacteria and promoting wound healing. Int J Biol Macromol. 2021;187:699-709. doi: 10.1016/j.ijbiomac.2021.07.139
- Culbertson EM, Culotta VC. Copper in infectious disease: Using both sides of the penny. Semin Cell Dev Biol. 2021;115:19-26. doi: 10.1016/j.semcdb.2020.12.003
- Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol. 2023;14:1236063. doi: 10.3389/fimmu.2023.1236063
- Zuhra K, Panagaki T, Randi EB, et al. Mechanism of cystathionine-beta-synthase inhibition by disulfiram: The role of bis(N,N-diethyldithiocarbamate)-copper(II). Biochem Pharmacol. 2020;182:114267. doi: 10.1016/j.bcp.2020.114267
- May KL, Lehman KM, Mitchell AM, Grabowicz M. A stress response monitoring lipoprotein trafficking to the outer membrane. mBio. 2019;10(3):e00618-19. doi: 10.1128/mBio.00618-19
- Peng G, Huang Y, Xie G, Tang J. Exploring copper’s role in stroke: Progress and treatment approaches. Front Pharmacol. 2024;15:1409317. doi: 10.3389/fphar.2024.1409317
- Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: Toxicity and human health effects. Arch Toxicol. 2024; 99:153-209. doi: 10.1007/s00204-024-03903-2
- Li Y, Li J, Zhong Y, et al. pH-responsive and nanoenzyme-loaded artificial nanocells relieved osteomyelitis efficiently by synergistic chemodynamic and cuproptosis therapy. Biomaterials. 2025;313:122762. doi: 10.1016/j.biomaterials.2024.122762
- Nandi SK, Chakraborty A, Panda AK, Biswas A. M. Leprae HSP18 suppresses copper (II) mediated ROS generation: Effect of redox stress on its structure and function. Int J Biol Macromol. 2020;146:648-660. doi: 10.1016/j.ijbiomac.2019.12.215
- Saini V, Tyagi K, Kumari R, Venkatesh V. Atomically precise copper nanoclusters mediated fenton-like reaction for cancer chemodynamic therapy. Chem Commun. 2024;60(86):12593-12596. doi: 10.1039/D4CC03338H
- Wang N, Liu Y, Peng D, et al. Copper-based composites nanoparticles improve triple-negative breast cancer treatment with induction of apoptosis-cuproptosis and immune activation. Adv Healthc Mater. 2024;13(28):e2401646. doi: 10.1002/adhm.202401646
- Zhu K, Shi J, Yang R, Zhou C, Liu Z. Evidence based on mendelian randomization: Causal relationship between mitochondrial biological function and lung cancer and its subtypes. Neoplasia. 2023;46:100950. doi: 10.1016/j.neo.2023.100950
- Kettner L, Seitl I, Fischer L. Recent advances in the application of microbial diamine oxidases and other histamine-oxidizing enzymes. World J Microbiol Biotechnol. 2022;38(12):232. doi: 10.1007/s11274-022-03421-2
- Ufnalska I, Drew SC, Zhukov I, et al. Intermediate Cu(II)-thiolate species in the reduction of Cu(II)GHK by glutathione: A handy chelate for biological Cu(II) reduction. Inorg Chem. 2021;60(23):18048-18057. doi: 10.1021/acs.inorgchem.1c02669
- Ogra Y, Suzuki KT. Targeting of tetrathiomolybdate on the copper accumulating in the liver of LEC rats. J Inorg Biochem. 1998;70(1):49-55. doi: 10.1016/s0162-0134(98)00012-9
- Xu W, Suo A, Aldai AJM, et al. Hollow calcium/copper bimetallic amplifier for cuproptosis/paraptosis/apoptosis cancer therapy via cascade reinforcement of endoplasmic reticulum stress and mitochondrial dysfunction. ACS Nano. 2024;18(43):30053-30068. doi: 10.1021/acsnano.4c11455
- Zhang J, Zhu M, Wang Q, Yang H. The combined use of copper sulfate and trichlorfon exerts stronger toxicity on the liver of zebrafish. Int J Mol Sci. 2023;24(13):11203. doi: 10.3390/ijms241311203
- Albarede F, Telouk P, Balter V, et al. Medical applications of Cu, Zn, and S isotope effects. Metallomics. 2016;8(10):1056-1070. doi: 10.1039/C5MT00316D
- Monestier M, Pujol AM, Lamboux A, et al. A liver-targeting Cu(i) chelator relocates Cu in hepatocytes and promotes Cu excretion in a murine model of Wilson’s disease. Metallomics. 2020;12(6):1000-1008. doi: 10.1039/d0mt00069h
- Al-Saleh E, Nandakumaran M, Al-Harmi J, Sadan T, Al-Enezi H. Maternal-fetal status of copper, iron, molybdenum, selenium, and zinc in obese pregnant women in late gestation. Biol Trace Elem Res. 2006;113(2):113-123. doi: 10.1385/BTER:113:2:113
- Gromadzka G, Antos A, Sorysz Z, Litwin T. Psychiatric symptoms in Wilson’s disease-consequence of ATP7B gene mutations or just coincidence?-Possible causal cascades and molecular pathways. Int J Mol Sci. 2024;25(22):12354. doi: 10.3390/ijms252212354
- Patel AH, Ghattu M, Mazzaferro N, et al. Demographics and outcomes related to Wilson’s disease patients: A nationwide inpatient cohort study. Cureus. 2023;15(9):e44714. doi: 10.7759/cureus.44714
- Ortiz JF, Morillo Cox A, Tambo W, et al. Neurological manifestations of Wilson’s disease: Pathophysiology and localization of each component. Cureus. 2020;12(11):e11509. doi: 10.7759/cureus.11509
- Mainardi V, Rando K, Valverde M, et al. Acute liver failure due to Wilson disease: Eight years of the national liver transplant program in Uruguay. Ann Hepatol. 2019;18(1):187-192. doi: 10.5604/01.3001.0012.7911
- Kaler SG, DiStasio AT. ATP7A-Related copper transport disorders. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® Seattle, WA: University of Washington; 1993.
- Fujisawa C, Kodama H, Sato Y, et al. Early clinical signs and treatment of Menkes disease. Mol Genet Metab Rep. 2022;31:100849. doi: 10.1016/j.ymgmr.2022.100849
- Guitet M, Campistol J, Medina M. Menkes disease: Experience in copper salts therapy. Rev Neurol. 1999;29(2):127-130.
- Zhu J, Liao Y, Li X, Jia F, Ma X, Qu H. Brain and the whole-body bone imaging appearances in Menkes disease: A case report and literature review. BMC Pediatr. 2024;24(1):411. doi: 10.1186/s12887-024-04885-x
- Martinez-Fierro ML, Cabral-Pacheco GA, Garza-Veloz I, et al. Whole-exome sequencing, proteome landscape, and immune cell migration patterns in a clinical context of menkes disease. Genes (Basel). 2021;12(5):744. doi: 10.3390/genes12050744
- Mauri A, Saielli LA, Alfei E, et al. Menkes disease complicated by concurrent ACY1 deficiency: A case report. Front Genet. 2023;14:1077625. doi: 10.3389/fgene.2023.1077625
- Perez MG, Suarez NG, Annabi B, Mateescu MA. Bioactive copper(II) agents and their potential involvement in the treatment of copper deficiency-related orphan diseases. J Inorg Biochem. 2023;247:112334. doi: 10.1016/j.jinorgbio.2023.112334
- Kamel AY, Johnson ZD, Hernandez I, et al. Micronutrient deficiencies in inflammatory bowel disease: An incidence analysis. Eur J Gastroenterol Hepatol. 2024;36(10):1186-1192. doi: 10.1097/MEG.0000000000002821
- Bunjun R, Ramla TF, Jaumdally SZ, et al. Initiating intramuscular depot medroxyprogesterone acetate increases frequencies of Th17-like human immunodeficiency virus target cells in the genital tract of women in South Africa: A randomized trial. Clin Infect Dis. 2022;75(11):2000-2011. doi: 10.1093/cid/ciac284
- Tao Z, Yang P, Zhou J, et al. Ideal serum non-ceruloplasmin bound copper prediction for long-term treated patients with Wilson disease: A nomogram model. Front Med (Lausanne). 2023;10:1275242. doi: 10.3389/fmed.2023.1275242
- Wiecek S, Paprocka J. Disorders of copper metabolism in children-a problem too rarely recognized. Metabolites. 2024;14(1):38. doi: 10.3390/metabo14010038
- Ciaffaglione V, Rizzarelli E. Carnosine, zinc and copper: A menage a trois in bone and cartilage protection. Int J Mol Sci. 2023;24(22):16209. doi: 10.3390/ijms242216209
- Guan M, Cheng K, Xie XT, et al. Regulating copper homeostasis of tumor cells to promote cuproptosis for enhancing breast cancer immunotherapy. Nat Commun. 2024;15(1):10060. doi: 10.1038/s41467-024-54469-7
- Yang Y, Hao X, Zhang J, et al. The E3 ligase TRIM22 functions as a tumor suppressor in breast cancer by targeting CCS for proteasomal degradation to inhibit STAT3 signaling. Cancer Lett. 2024;600:217157. doi: 10.1016/j.canlet.2024.217157
- Hirschfield GM, Arndtz K, Kirkham A, et al. Vascular adhesion protein-1 blockade in primary sclerosing cholangitis: Open-label, multicenter, single-arm, phase II trial. Hepatol Commun. 2024;8(5):e0426. doi: 10.1097/HC9.0000000000000426
- Lyon AC, Lippa CF, Eiser AR. Metabolic and environmental biomarkers in mild cognitive impairment and dementia: An exploratory study. J Integr Complement Med. 2024;30(8):793-801. doi: 10.1089/jicm.2023.0583
- Solovyev N, Lucio M, Mandrioli J, et al. Interplay of metallome and metabolome in amyotrophic lateral sclerosis: A study on cerebrospinal fluid of patients carrying disease-related gene mutations. ACS Chem Neurosci. 2023;14(17):3035-3046. doi: 10.1021/acschemneuro.3c00128
- De Riccardis L, Buccolieri A, Muci M, et al. Copper and ceruloplasmin dyshomeostasis in serum and cerebrospinal fluid of multiple sclerosis subjects. Biochim Biophys Acta Mol Basis Dis. 2018;1864(5 Pt A):1828-1838. doi: 10.1016/j.bbadis.2018.03.007
- Musacco Sebio R, Ferrarotti N, Saporito Magrina C, et al. Redox dyshomeostasis in the experimental chronic hepatic overloads with iron or copper. J Inorg Biochem. 2019;191:119-125. doi: 10.1016/j.jinorgbio.2018.11.014
- Yao J, Chen Y, Zhang L, et al. pH-responsive CuS/DSF/EL/PVP nanoplatform alleviates inflammatory bowel disease in mice via regulating gut immunity and microbiota. Acta Biomater. 2024;178:265-286. doi: 10.1016/j.actbio.2024.02.034
- Davoudi CF, Ramp P, Baumgart M, Bott M. Identification of Surf1 as an assembly factor of the cytochrome bc1-aa3 supercomplex of actinobacteria. Biochim Biophys Acta Bioenerg. 2019;1860(10):148033. doi: 10.1016/j.bbabio.2019.06.005
- Xue Q, Kang R, Klionsky DJ, Tang D, Liu J, Chen X. Copper metabolism in cell death and autophagy. Autophagy. 2023;19(8):2175-2195. doi: 10.1080/15548627.2023.2200554
- Arulraj K, Quadri JA, Nayak B, et al. Impact of heavy metals, oxidative stress, expression of VHL, and antioxidant genes in the pathogenesis of renal cell carcinoma. Urol Oncol. 2025;43(1):66.e19-66.e28. doi: 10.1016/j.urolonc.2024.08.015
- Wang R, Hou L, Lu H, et al. Unveiling the interplay of MAPK/NF-kappaB/MLKL axis in brain health: Omega-3 as a promising candidates against copper neurotoxicity. J Environ Manage. 2024;370:122791. doi: 10.1016/j.jenvman.2024.122791
- Qin Y, Liu Y, Xiang X, et al. Cuproptosis correlates with immunosuppressive tumor microenvironment based on pan-cancer multiomics and single-cell sequencing analysis. Mol Cancer. 2023;22(1):59. doi: 10.1186/s12943-023-01752-8
- Zhao R, Sukocheva O, Tse E, et al. Cuproptosis, the novel type of oxidation-induced cell death in thoracic cancers: Can it enhance the success of immunotherapy? Cell Commun Signal. 2024;22(1):379. doi: 10.1186/s12964-024-01743-2
- Chu M, An X, Fu C, et al. Disulfiram/copper induce ferroptosis in triple-negative breast cancer cell line MDA-MB-231. Front Biosci (Landmark Ed). 2023;28(8):186. doi: 10.31083/j.fbl2808186
- Chu B, Wang Y, Yang J, Dong B. Integrative analysis of single-cell and bulk RNA seq to reveal the prognostic model and tumor microenvironment remodeling mechanisms of cuproptosis-related genes in colorectal cancer. Aging (Albany NY). 2023;15(23):14422-14444. doi: 10.18632/aging.205324
- Lu Z, Ding L, Zhang S, et al. Bioinformatics analysis of copper death gene in diabetic immune infiltration. Medicine (Baltimore). 2023;102(39):e35241. doi: 10.1097/MD.0000000000035241
- Li Q, Wang S, Guo P, et al. Mitochondrial DNA release mediated by TFAM deficiency promotes copper-induced mitochondrial innate immune response via cGAS-STING signalling in chicken hepatocytes. Sci Total Environ. 2023;905:167315. doi: 10.1016/j.scitotenv.2023.167315
- Williams CL, Neu HM, Alamneh YA, et al. Characterization of Acinetobacter baumannii copper resistance reveals a role in virulence. Front Microbiol. 2020;11:16. doi: 10.3389/fmicb.2020.00016
- Steunou AS, Durand A, Liotenberg S, Bourbon ML, Ouchane S. Investigating MerR’s selectivity: The crosstalk between cadmium and copper under elevated stress conditions. Biomolecules. 2024;14(11):1429. doi: 10.3390/biom14111429
- Hussain Q, Ye T, Li S, Nkoh JN, Zhou Q, Shang C. Genome-wide identification and expression analysis of the copper transporter (COPT/Ctr) gene family in Kandelia obovata, a typical mangrove plant. Int J Mol Sci. 2023;24(21):15579. doi: 10.3390/ijms242115579
- Shey-Njila O, Hikal AF, Gupta T, et al. CtpB facilitates Mycobacterium tuberculosis growth in copper-limited niches. Int J Mol Sci. 2022;23(10):5713. doi: 10.3390/ijms23105713
- Lu J, Liu X, Li X, et al. Copper regulates the host innate immune response against bacterial infection via activation of ALPK1 kinase. Proc Natl Acad Sci U S A. 2024;121(4):e2311630121. doi: 10.1073/pnas.2311630121
- Miao M, Cao S, Tian Y, et al. Potential diagnostic biomarkers: 6 cuproptosis- and ferroptosis-related genes linking immune infiltration in acute myocardial infarction. Genes Immun. 2023;24(4):159-170. doi: 10.1038/s41435-023-00209-8
- Ray SC, Rappleye CA. Mac1-dependent copper sensing promotes Histoplasma adaptation to the phagosome during adaptive immunity. mBio. 2022;13(2):e0377321. doi: 10.1128/mbio.03773-21
- Jett KA, Baker ZN, Hossain A, et al. Mitochondrial dysfunction reactivates alpha-fetoprotein expression that drives copper-dependent immunosuppression in mitochondrial disease models. J Clin Invest. 2023;133(1):e154684. doi: 10.1172/JCI154684
- Wang F, Lin H, Su Q, Li C. Cuproptosis-related lncRNA predict prognosis and immune response of lung adenocarcinoma. World J Surg Oncol. 2022;20(1):275. doi: 10.1186/s12957-022-02727-7
- Yuan Y, Fu M, Li N, Ye M. Identification of immune infiltration and cuproptosis-related subgroups in Crohn’s disease. Front Immunol. 2022;13:1074271. doi: 10.3389/fimmu.2022.1074271
- Chen Y, Li X, Sun R, et al. A broad cuproptosis landscape in inflammatory bowel disease. Front Immunol. 2022;13:1031539. doi: 10.3389/fimmu.2022.1031539
- Chen Y, Tang L, Huang W, et al. Identification of a prognostic cuproptosis-related signature in hepatocellular carcinoma. Biol Direct. 2023;18(1):4. doi: 10.1186/s13062-023-00358-w
- Lin Z, He Y, Wu Z, Yuan Y, Li X, Luo W. Comprehensive analysis of copper-metabolism-related genes about prognosis and immune microenvironment in osteosarcoma. Sci Rep. 2023;13(1):15059. doi: 10.1038/s41598-023-42053-w
- Guo B, Yang F, Zhang L, et al. Cuproptosis induced by ROS responsive nanoparticles with elesclomol and copper combined with alphaPD-L1 for enhanced cancer immunotherapy. Adv Mater. 2023;35(22):e2212267. doi: 10.1002/adma.202212267
- Komazin G, Rizk AA, Armbruster KM, Bonnell VA, Llinas M, Meredith TC. A copper-responsive two-component system governs lipoprotein remodeling in Listeria monocytogenes. J Bacteriol. 2023;205(1):e0039022. doi: 10.1128/jb.00390-22
- Collins JF. Copper nutrition and biochemistry and human (patho)physiology. Adv Food Nutr Res. 2021;96:311-364. doi: 10.1016/bs.afnr.2021.01.005