AccScience Publishing / IMO / Online First / DOI: 10.36922/IMO025060009
PERSPECTIVE ARTICLE

Exploring Peganum harmala as a natural alternative to semaglutide: A novel approach to glucagon-like peptide-1 stimulation and insulin sensitization

Maher Monir. Akl1* Amr Ahmed2
Show Less
1 Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
2 Department of Public Health, Riyadh First Health Cluster, Ministry of Health, Saudi Arabia
Submitted: 5 February 2025 | Revised: 6 March 2025 | Accepted: 6 March 2025 | Published: 19 March 2025
(This article belongs to the Special Issue Medicinal and Pharmaceutical Chemistry )
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Correction

Glucagon-like peptide-1 (GLP-1) is a crucial incretin hormone that regulates glucose homeostasis by enhancing insulin secretion, suppressing glucagon release, and delaying gastric emptying. While synthetic GLP-1 receptor agonists such as semaglutide have demonstrated efficacy in managing type 2 diabetes mellitus and obesity, their high cost, limited accessibility, and adverse effects have limited their applicability, necessitating the search for alternative therapeutic strategies. Peganum harmala (harmal), a traditional medicinal plant, has gained attention for its bioactive alkaloids, harmine, and harmaline, which have been shown to modulate key molecular pathways involved in GLP-1 secretion and insulin sensitization. These alkaloids enhance Akt phosphorylation (pS473-Akt), facilitating glucose transporter type 4 translocation and glucose uptake, while concurrently activating the nuclear factor erythroid 2-related factor 2 pathway, leading to increased antioxidant defenses and reduced oxidative stress in pancreatic β-cells and enteroendocrine L-cells. Furthermore, P. harmala alleviates insulin resistance by suppressing IRS-1 serine phosphorylation (pS307-IRS-1) and improving phosphoinositide 3-kinase/Akt signaling, thereby optimizing insulin receptor sensitivity and metabolic homeostasis. Despite these promising pharmacological properties, the poor solubility and rapid metabolism of harmine and harmaline pose challenges to their clinical application. Nanotechnology-based drug delivery systems, including liposomal encapsulation and polymeric nanoparticles, offer a potential solution to enhance bioavailability, prolong systemic circulation, and enable targeted delivery to GLP-1-secreting cells. This paper delves into the molecular mechanisms by which P. harmala stimulates GLP-1 secretion and improves insulin sensitivity, compares its effects with semaglutide, and highlights the potential role of nanotechnology in optimizing its therapeutic applications. By integrating traditional medicine with modern pharmaceutical advancements, P. harmala represents a promising, cost-effective, and sustainable approach to metabolic disorder management, warranting further investigation through pre-clinical and clinical studies.

Keywords
Peganum harmala
Glucagon-like peptide-1
Semaglutide
Insulin sensitivity
Nanotechnology
Funding
None.
Conflict of interest
The authors declare that there are no conflicts of interest.
References
  1. Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130. doi: 10.1016/j.molmet.2019.09.010

 

  1. Nadkarni P, Chepurny OG, Holz GG. Regulation of glucose homeostasis by GLP-1. Prog Mol Biol Transl Sci. 2014;121:23-65. doi: 10.1016/B978-0-12-800101-1.00002-8

 

  1. Diz-Chaves Y, Maastor Z, Spuch C, Lamas JA, González- Matías LC, Mallo F. Glucagon-like peptide 1 receptor activation: Anti-inflammatory effects in the brain. Neural Regen Res. 2024;19(8):1671-1677. doi: 10.4103/1673-5374.389626

 

  1. Kalinderi K, Papaliagkas V, Fidani L. GLP-1 receptor agonists: A new treatment in Parkinson’s disease. Int J Mol Sci. 2024;25(7):3812. doi: 10.3390/ijms25073812

 

  1. Moloudizargari M, Mikaili P, Aghajanshakeri S, Asghari MH, Shayegh J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev. 2013;7(14):199-212. doi: 10.4103/0973-7847.120524

 

  1. Berlowitz I, Egger K, Cumming P. Monoamine oxidase inhibition by plant-derived β-carbolines; Implications for the psychopharmacology of tobacco and ayahuasca. Front Pharmacol. 2022;13:886408. doi: 10.3389/fphar.2022.886408

 

  1. Saleh RA, Eissa TF, Abdallah DM, Saad MA, El-Abhar HS. Peganum harmala enhanced GLP-1 and restored insulin signaling to alleviate AlCl3-induced Alzheimer-like pathology model. Sci Rep. 2021;11(1):12040. doi: 10.1038/s41598-021-90545-4

 

  1. Świderska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, Śliwińska A. Role of PI3K/AKT Pathway in Insulin-Mediated Glucose Uptake. London: IntechOpen; 2020. doi: 10.5772/intechopen.80402

 

  1. Rupprecht LE, Mietlicki-Baase EG, Zimmer DJ, McGrath LE, Olivos DR, Hayes MR. Hindbrain GLP-1 receptor-mediated suppression of food intake requires a PI3K-dependent decrease in phosphorylation of membrane-bound Akt. Am J Physiol Endocrinol Metab. 2013;305(6):E751-E759. doi: 10.1152/ajpendo.00367.2013

 

  1. Tunduguru R, Thurmond DC. Promoting glucose transporter-4 vesicle trafficking along cytoskeletal tracks: PAK-Ing them out. Front Endocrinol (Lausanne). 2017;8:329. doi: 10.3389/fendo.2017.00329

 

  1. Yi T, Li X, Wang E, et al. Activation of the nuclear erythroid 2-related factor 2 antioxidant responsive element (Nrf2-ARE) signaling pathway alleviates acute graft-versus-host disease by reducing oxidative stress and inhibiting infiltration of inflammatory cells in an allogeneic stem cell transplantation mouse model. Med Sci Monit. 2018;24:5973-5979. doi: 10.12659/MSM.908130

 

  1. Chen X, Guo C, Kong J. Oxidative stress in neurodegenerative diseases. Neural Regen Res. 2012;7(5):376-385. doi: 10.3969/j.issn.1673-5374.2012.05.009

 

  1. Jeong WS, Jun M, Kong AN. Nrf2: A potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal. 2006;8(1-2):99-106. doi: 10.1089/ars.2006.8.99

 

  1. Jain S, Panuganti V, Jha S, Roy I. Harmine acts as an indirect inhibitor of intracellular protein aggregation. ACS Omega. 2020;5(11):5620-5628. doi: 10.1021/acsomega.9b02375

 

  1. Jiang Y, Bao H, Ge Y, et al. Therapeutic targeting of GSK3β enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C. Gut. 2015;64(1):168-179. doi: 10.1136/gutjnl-2013-306043

 

  1. Zheng Z, Zong Y, Ma Y, et al. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduct Target Ther. 2024;9:234. doi: 10.1038/s41392-024-01931-z

 

  1. Smith NK, Hackett TA, Galli A, Flynn CR. GLP-1: Molecular mechanisms and outcomes of a complex signaling system. Neurochem Int. 2019;128:94-105. doi: 10.1016/j.neuint.2019.04.010

 

  1. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007;113(3):546-593. doi: 10.1016/j.pharmthera.2006.11.007

 

  1. Kaneto H, Kimura T, Shimoda M, et al. Favorable effects of GLP-1 receptor agonist against pancreatic β-cell glucose toxicity and the development of arteriosclerosis: “The earlier, the better” in therapy with incretin-based medicine. Int J Mol Sci. 2021;22(15):7917. doi: 10.3390/ijms22157917

 

  1. Diz-Chaves Y, Herrera-Pérez S, González-Matías LC, Lamas JA, Mallo F. Glucagon-like peptide-1 (GLP-1) in the integration of neural and endocrine responses to stress. Nutrients. 2020;12(11):3304. doi: 10.3390/nu12113304

 

  1. Camilleri M. Gastrointestinal hormones and regulation of gastric emptying. Curr Opinion Endocrinol Diabetes Obes. 2019;26(1):3-10. doi: 10.1097/MED.0000000000000448

 

  1. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409-1439. doi: 10.1152/physrev.00034.2006

 

  1. Hamed K, Alosaimi MN, Ali BA, et al. Glucagon-like peptide-1 (GLP-1) receptor agonists: Exploring their impact on diabetes, obesity, and cardiovascular health through a comprehensive literature review. Cureus. 2024;16(9):e68390. doi: 10.7759/cureus.68390

 

  1. Taktaz F, Fontanella RA, Scisciola L, et al. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: Evidence for the role of tirzepatide. Cardiovasc Diabetol. 2024;23:242. doi: 10.1186/s12933-024-02319-7

 

  1. Shu Y, He X, Wu P, Liu Y, Ding Y, Zhang Q. Gastrointestinal adverse events associated with semaglutide: A pharmacovigilance study based on FDA adverse event reporting system. Front Public Health. 2022;10:996179. doi: 10.3389/fpubh.2022.996179

 

  1. Dagher C, Jailani M, Akiki M, Siddique T, Saleh Z, Nadler E. Semaglutide-induced acute pancreatitis leading to death after four years of use. Cureus. 2024;16(9):e69704. doi: 10.7759/cureus.69704

 

  1. Moshiri M, Etemad L, Javidi S, Alizadeh A. Peganum harmala intoxication, a case report. Avicenna J Phytomed. 2013;3(3):288-292.

 

  1. Mahapatra MK, Karuppasamy M, Sahoo BM. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev Endocr Metab Disord. 2022;23(3):521-539. doi: 10.1007/s11154-021-09699-1

 

  1. Draznin B. Molecular mechanisms of insulin resistance: Serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: The two sides of a coin. Diabetes. 2006;55(8):2392-2397. doi: 10.2337/db06-0391

 

  1. Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis. 2024;39(8):1523-1541. doi: 10.1007/s11011-024-01416-6

 

  1. Fornes A, Huff J, Pritchard RI, Godfrey M. Once-weekly semaglutide for weight management: A clinical review. J Pharm Technol. 2022;38(4):239-246. doi: 10.1177/87551225221092681

 

  1. Title AC, Karsai M, Mir-Coll J, et al. Evaluation of the effects of harmine on β-cell function and proliferation in standardized human islets using 3D high-content confocal imaging and automated analysis. Front Endocrinol (Lausanne). 2022;13:854094. doi: 10.3389/fendo.2022.854094

 

  1. Modvig IM, Smits MM, Galsgaard KD, et al. L-valine is a powerful stimulator of GLP-1 secretion in rodents and stimulates secretion through ATP-sensitive potassium channels and voltage-gated calcium channels. Nutr Diabetes. 2024;14(1):43. doi: 10.1038/s41387-024-00303-4

 

  1. Herraiz T, González D, Ancín-Azpilicueta C, Arán VJ, Guillén H. beta-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem Toxicol. 2010;48(3):839-845. doi: 10.1016/j.fct.2009.12.019

 

  1. Ernst AU, Bowers DT, Wang LH, et al. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev. 2019;139:116-138. doi: 10.1016/j.addr.2019.01.013

 

  1. Zeng Y, Wu Y, Zhang Q, Xiao X. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases. mBio. 2024;15(1):e0203223. doi: 10.1128/mbio.02032-23

 

  1. Solis-Herrera C, Kane MP, Triplitt C. Current understanding of sodium N-(8-[2-Hydroxylbenzoyl] Amino) caprylate (SNAC) as an absorption enhancer: The oral semaglutide experience. Clin Diabetes. 2024;42(1):74-86. doi: 10.2337/cd22-0118

 

  1. Monti G, Gomes Moreira D, Richner M, Mutsaers HAM, Ferreira N, Jan A. GLP-1 receptor agonists in neurodegeneration: Neurovascular unit in the spotlight. Cells. 2022;11(13):2023. doi: 10.3390/cells11132023

 

  1. Ahmed A, Monir Akl M. Exploring a synergistic approach: Dual GLP-1 agonist combined with degludec basal insulin for early type 1 diabetes treatment and its impact on albumin-insulin producing cells expression. Adv Pharm Bull. 2024;14(2):262-265. doi: 10.34172/apb.2024.040

 

  1. Ghanbari A, Jalili C, Shahveisi K, Akhshi N. Harmine exhibits anti-apoptotic properties and reduces diabetes-induced testicular damage caused by streptozotocin in rats. Clin Exp Reprod Med. 2024;51(4):324-333. doi: 10.5653/cerm.2023.06254

 

  1. Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids: An updated and systematic review. Fitoterapia. 2025;180:106326. doi: 10.1016/j.fitote.2024.106326

 

Share
Back to top
Innovative Medicines & Omics, Electronic ISSN: 3060-8740 Print ISSN: 3060-8910, Published by AccScience Publishing