AccScience Publishing / IMO / Online First / DOI: 10.36922/imo.3442
ORIGINAL RESEARCH ARTICLE

Potent and selective inhibitory effect of 4-aminoquinoline derivatives on SARS-CoV-2 replication

Nicolas Glanzmann1† Thamara Kelcya F. Oliveira2,3† Vinicius Carius de Souza4† Amanda R. Tucci2,3 Eduarda Alves Penna4 Alice Santos Rosa2,3 Maria Luiza Pereira Baltazar4 Matheus José Novais Landim4 Vivian Neuza S. Ferreira2 Pamella Constantino-Teles2,3 Daniel Dias Countinho Souza2,3 Sylvia Roxo2 Caroline Souza de Freitas5,6 Aline de Paula Dias da Silva5,6 Thiago Moreno Lopes Souza5,6 Priscila Vanessa S. Zabala Capriles4†* Milene Dias Miranda2,3†* Adilson D. da Silva1†*
Show Less
1 Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
2 Viral Morphology and Morphogenesis Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
3 Postgraduate Program in Cellular and Molecular Biology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
4 Department of Computer Science, Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
IMO 2024, 1(1), 88–106; https://doi.org/10.36922/imo.3442
Submitted: 17 April 2024 | Accepted: 23 May 2024 | Published: 21 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The global coronavirus disease 2019 (COVID-19) pandemic, caused by the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had resulted in significant mortality worldwide. In 2020, the World Health Organization started the solidarity clinical trial to assess the efficacy of four proposed therapeutic strategies, including chloroquine (CQ), a 4-aminoquinoline molecule. However, CQ lacks clinical benefit and, therefore, failed to show in vitro anti-SARS-CoV-2 activity in TMPRSS2-expressing cells, such as Calu-3 cell line, which recapitulate human type II pneumocytes. Nevertheless, other 4-aminoquinoline derivatives have shown high affinity toward the SARS-CoV-2 main protease (Mpro). This study aimed to evaluate, in vitro and in silico, the inhibitory potential of nine 4-aminoquinoline derivatives against SARS-CoV-2, building upon the observed antiviral activity of established antimalarial drugs. We assessed the ability of these derivatives to inhibit SARS-CoV-2 (wild type and Omicron variant) replication in Vero E6 and Calu-3 cell lines. In addition, we conducted docking studies to determine the binding affinity and protein-ligand interactions. Notably, these derivatives exhibited potent antiviral activity with low cytotoxicity in Vero E6 and Calu-3 cell models. In silico investigations targeting the Mpro enzyme supported the potential of the derivatives as promising agents in the fight against SARS-CoV-2. Our findings underscore the potential of these 4-aminoquinoline derivatives as robust inhibitors of SARS-CoV-2 and advocate for further research to explore their therapeutic applications, providing valuable insights for future drug development strategies.

Keywords
SARS-CoV-2
4-aminoquinolines
Vero E6
Calu-3
Molecular docking
Funding
This research was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). T.K.F.O., A.R.T., A.S.R., V.N.S.F., P.C.T., D.D.C.S., J.N.H.L, S.R., and M.D.M. supported by Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz (IOC), Fiocruz, FIOTEC (grant number IOC-023-FIO-18-2-58), Inova Fiocruz (grant number VPPIS-004-FIO-22-2-21), CNPq (Bolsista DT grant number: 312027/2022-2), CAPES (scholarships and grant numbers: 88881.506711/2020-01, 88887.648435/2021- 00, 88887.636136/2021-00, 88887.717861/2022-00, 88887.694990/2022-00, 88887.719751/2022-00), and FAPERJ (E-26/201.426/2022, E-26/203.183/2023). The authors would also like to thank CAPES (process 88887.506710/2020-00, 88887.647774/2021-00 and 88887.722759/2022-00) and CNPq (process 312295/2020-0).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552-555. doi: 10.1002/jmv.25728

 

  1. Dhama K, Nainu F, Frediansyah A, et al. Global emerging omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health. 2023;16(1):4-14. doi: 10.1016/j.jiph.2022.11.024

 

  1. Ramasamy R. Overview of immunological and virological factors driving the evolution and global spread of SARS- CoV-2 variants. Indian J Med Res. 2023;158(3):257-268. doi: 10.4103/ijmr.ijmr_2591_22

 

  1. Xie X, Lan Q, Zhao J, et al. Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Signal Transduct Target Ther. 2024;9(1):54. doi: 10.1038/s41392-024-01758-8

 

  1. Hillary VE, Ceasar SA. An update on COVID-19: SARS-CoV-2 variants, antiviral drugs, and vaccines. Heliyon. 2023;9(3):e13952. doi: 10.1016/j.heliyon.2023.e13952

 

  1. Alipoor R, Ranjbar R. Small-molecule metabolites in SARS-CoV-2 treatment: A comprehensive review. Biol Chem. 2023;404(6):569-584. doi: 10.1515/hsz-2022-0323

 

  1. Zhu J, Zhang H, Lin Q, et al. Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro peptidomimetics and small-molecule anti-inflammatory compounds. Drug Des Devel Ther. 2022;16:1067-1082. doi: 10.2147/DDDT.S359009

 

  1. Schimunek J, Seidl P, Elez K, et al. A community effort in SARS-CoV-2 drug discovery. Mol Inform. 2024;43(1):e202300262. doi: 10.1002/minf.202300262

 

  1. Meo SA, Klonoff DC, Akram J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci. 2020;24(8):4539-4547. doi: 10.26355/eurrev_202004_21038

 

  1. Lin L, Lu L, Cao W, et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727-732. doi: 10.1080/22221751.2020.1746199

 

  1. Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15):732-739. doi: 10.1093/cid/ciaa237

 

  1. Quiros Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against SARS-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res. 2020;158:104904. doi: 10.1016/j.phrs.2020.104904

 

  1. Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur J Med Chem. 2023;256:115458. doi: 10.1016/j.ejmech.2023.115458

 

  1. Shetty RM, Namachivayam A. Evidence for chloroquine/ hydroxychloroquine in the treatment of COVID-19. Indian J Crit Care Med. 2021;25(4):441-452. doi: 10.5005/jp-journals-10071-23773

 

  1. Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020;35(12):1123-1138. doi: 10.1007/s10654-020-00698-1

 

  1. Sacramento CQ, Fintelman-Rodrigues N, Dias SS, et al. Unlike chloroquine, mefloquine inhibits SARS-CoV-2 infection in physiologically relevant cells. Viruses. 2022;14(2):374. doi: 10.3390/v14020374

 

  1. Malakar S, Sreelatha L, Dechtawewat T, et al. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res. 2018;255:171-178. doi: 10.1016/j.virusres.2018.07.018

 

  1. Al-Bari MA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5(1):e00293. doi: 10.1002/prp2.293

 

  1. D’Alessandro S, Scaccabarozzi D, Signorini L, et al. The use of antimalarial drugs against viral infection. Microorganisms. 2020;8(1):85. doi: 10.3390/microorganisms8010085

 

  1. Bazotte RB, Hirabara SM, Serdan TA, et al. 4-Aminoquinoline compounds from the Spanish flu to COVID-19. Biomed Pharmacother. 2021;135:111138. doi: 10.1016/j.biopha.2020.111138

 

  1. Mizuta S, Mosaddeque F, Tun MM, et al. Challenges based on antiplasmodial and antiviral activities of 7-chloro-4-aminoquinoline derivatives. ChemMedChem. 2023;18(7):e202200586. doi: 10.1002/cmdc.202200586

 

  1. Belhassan A, En-Nahli F, Zaki H, Lakhlifi T, Bouachrine M. Assessment of effective imidazole derivatives against SARS-CoV-2 main protease through computational approach. Life Sci. 2020;262:118469. doi: 10.1016/j.lfs.2020.118469

 

  1. O’Neill PM, Ward SA, Berry NG, et al. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr Top Med Chem. 2006;6(5):479-507. doi: 10.2174/156802606776743147

 

  1. Wu YC, Lu MT, Chu PC, et al. Novel 4-aminoquinoline analogs targeting the HIF-1α signaling pathway. Future Med Chem. 2023;15(17):1569-1582. doi: 10.4155/fmc-2023-0169

 

  1. Vausselin T, Séron K, Lavie M, et al. Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J Virol. 2016;90(19):8422-8434. doi: 10.1128/JVI.00404-16

 

  1. Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res. 2015;4:1091. doi: 10.12688/f1000research.7217.3

 

  1. Hu Q, Xiong Y, Zhu GH, et al. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm (2020). 2022;3(3):e151. doi: 10.1002/mco2.151

 

  1. Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science. 2020;368(6489):409-412. doi: 10.1126/science.abb3405

 

  1. Achutha AS, Pushpa VL, Suchitra S. Theoretical insights into the anti-SARS-CoV-2 activity of chloroquine and its analogs and in silico screening of main protease inhibitors. J Proteome Res. 2020;9(11):4706-4717. doi: 10.1021/acs.jproteome.0c00683

 

  1. Carmo AM, Silva FM, Machado PA, et al. Synthesis of 4-aminoquinoline analogues and their platinum(II) complexes as new antileishmanial and antitubercular agents. Biomed Pharmacother. 2011;65(3):204-209. doi: 10.1016/j.biopha.2011.01.003

 

  1. Calixto SL, Glanzmann N, Xavier Silveira MM, et al. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp. Chem Biol Interact. 2018;293:141-151. doi: 10.1016/j.cbi.2018.08.003

 

  1. Dludla PV, Jack B, Viraragavan A, et al. A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes. Toxicol Rep. 2018;5:1014-1020. doi: 10.1016/j.toxrep.2018.10.002

 

  1. Fintelman-Rodrigues N, Sacramento CQ, Ribeiro Lima C, et al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production. Antimicrob Agents Chemother. 2020;64(10):e00825-20. doi: 10.1128/AAC.00825-20

 

  1. Chaves OA, Sacramento CQ, Ferreira AC, et al. Atazanavir is a competitive inhibitor of SARS-CoV-2 Mpro, impairing variants replication in vitro and in vivo. Pharmaceuticals (Basel). 2021;15(1):21. doi: 10.3390/ph15010021

 

  1. Laboratory Biosafety Guidance Related to Coronavirus Disease (COVID-19): Interim Guidance; 2021. Available from: https://www.who.int/publications/i/item/who-wpe-gih-2021.1 [Last accessed on 2023 Sep 10].

 

  1. Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289-293. doi: 10.1038/s41586-020-2223-y

 

  1. Goyal B, Goyal D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb Sci. 2020;22(6):297-305. doi: 10.1021/acscombsci.0c00058

 

  1. Uzunova K, Filipova E, Pavlova V, et al. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed Pharmacother. 2020;131:110668. doi: 10.1016/j.biopha.2020.110668

 

  1. Patel TK, Patel PB, Barvaliya M, et al. Efficacy and safety of lopinavir-ritonavir in COVID-19: A systematic review of randomized controlled trials. J Infect Public Health. 2021;14(6):740-748. doi: 10.1016/j.jiph.2021.03.015

 

  1. Habler K, Brügel M, Teupser D, et al. Simultaneous quantification of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC-MS/MS method in human serum. J Pharm Biomed Anal. 2021;196:113935. doi: 10.1016/j.jpba.2021.113935

 

  1. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. [The article was originally published in Adv Drug Deliv Rev. 1997;23:3-25]. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/S0169-409X(00)00129-0

 

  1. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-2623. doi: 10.1021/jm020017n

 

  1. Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999;16(10):1514-1519. doi: 10.1023/A:1015040217741

 

  1. Zhu Y, Chidekel A, Shaffer TH. Cultured human airway epithelial cells (Calu-3): A model of human respiratory function, structure, and inflammatory responses. Crit Care Res Pract. 2010;2010:394578. doi: 10.1155/2010/394578

 

  1. Kumar S, Sarma P, Kaur H, et al. Clinically relevant cell culture models and their significance in isolation, pathogenesis, vaccine development, repurposing and screening of new drugs for SARS-CoV-2: A systematic review. Tissue Cell. 2021;70:101497. doi: 10.1016/j.tice.2021.101497

 

  1. Prieto Santamaría L, Díaz Uzquiano M, Ugarte Carro E, Ortiz-Roldán N, Pérez Gallardo Y, Rodríguez-González A. Integrating heterogeneous data to facilitate COVID-19 drug repurposing. Drug Discov Today. 2022;27(2):558-566. doi: 10.1016/j.drudis.2021.10.002

 

  1. Siminea N, Popescu V, Sanchez Martin JA, et al. Network analytics for drug repurposing in COVID-19. Brief Bioinform. 2022;23(1):bbab490. doi: 10.1093/bib/bbab490

 

  1. Sezer A, Halilović-Alihodžić M, Vanwieren AR, et al. A review on drug repurposing in COVID-19: From antiviral drugs to herbal alternatives. J Genet Eng Biotechnol. 2022;20(1):78. doi: 10.1186/s43141-022-00353-0

 

  1. Sinha N, Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med J. 2020;96(1139):550-555. doi: 10.1136/postgradmedj-2020-137785

 

  1. Yuan Z, Pavel MA, Wang H, et al. Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture. Commun Biol. 2022;5(1):958. doi: 10.1038/s42003-022-03841-8

 

  1. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6(1):16. doi: 10.1038/s41421-020-0156-0

 

  1. Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 2021;17(1):e1009212. doi: 10.1371/journal.ppat.1009212

 

  1. Biot C, Glorian G, Maciejewski LA, Brocard JS. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene-chloroquine analogue. J Med Chem. 1997;40(23):3715-3718. doi: 10.1021/jm970401y

 

  1. Biot C, Daher W, Chavain N, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem. 2006;49:2845-2849. doi: 10.1021/jm0601856

 

  1. Vausselin T, Calland N, Belouzard S, et al. The antimalarial ferroquine is an inhibitor of hepatitis C virus. Hepatology. 2013;58(1):86-97. doi: 10.1002/hep.26273

 

  1. Marois I, Cloutier A, Meunier I, et al. Inhibition of influenza virus replication by targeting broad host cell pathways. PLoS One. 2014;9(10):e110631. doi: 10.1371/journal.pone.0110631

 

  1. Ribeiro Antinarelli LM, Glanzmann N, Mendonça DV, et al. Parasitological and immunological evaluation of a quinoline derivative salt incorporated into a polymeric micelle formulation against Leishmania infantum infection. Parasitol Res. 2022;121(7):2129-2140. doi: 10.1007/s00436-022-07544-1

 

  1. De Souza NB, Carmo AM, Lagatta DC, et al. 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents. Biomed Pharmacother. 2011;65(4):313-316. doi: 10.1016/j.biopha.2011.03.003

 

  1. De Souza NB, Carmo AM, Da Silva AD, et al. Antiplasmodial activity of chloroquine analogs against chloroquine-resistant parasites, docking studies and mechanisms of drug action. Malar J. 2014;13(1):469. doi: 10.1186/1475-2875-13-469

 

  1. Bezerra Bellei JC, Glanzmann N, Carpinter BA, et al. A simple quinoline salt derivative is active in vitro against Plasmodium falciparum asexual blood stages and inhibits the development of cerebral malaria in murine model. Chem Biol Interact. 2022;355:109848. doi: 10.1016/j.cbi.2022.109848

 

  1. Zhang Q, Xiang R, Huo S, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1):233. doi: 10.1038/s41392-021-00653-w

 

  1. Essalmani R, Jain J, Susan-Resiga D, et al. Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity. J Virol. 2022;96(8):e0012822. doi: 10.1128/jvi.00128-22

 

  1. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3-20. doi: 10.1038/s41580-021-00418-x

 

  1. Shapira T, Monreal IA, Dion SP, et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature. 2022;605(7909):340-348. doi: 10.1038/s41586-022-04661-w

 

  1. Aiewsakun P, Phumiphanjarphak W, Ludowyke N, et al. Systematic exploration of SARS-CoV-2 adaptation to vero e6, vero E6/TMPRSS2, and calu-3 cells. Genome Biol Evol. 2023;15(4):evad035. doi: 10.1093/gbe/evad035

 

  1. Chen Y, Yang WH, Chen HF, et al. Tafenoquine and its derivatives as inhibitors for the severe acute respiratory syndrome coronavirus 2. J Biol Chem. 2022;298(3):101658. doi: 10.1016/j.jbc.2022.101658

 

  1. Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, et al. In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. J Antimicrob Chemother. 2021;76(7):1874-1885. doi: 10.1093/jac/dkab072

 

  1. Li P, Wang Y, Lavrijsen M, et al. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022;32(3):322-324. doi: 10.1038/s41422-022-00618-w

 

  1. Ruiz-Moreno AJ, Cedillo-González R, Cordova-Bahena L, et al. Consensus pharmacophore strategy for identifying novel SARS-Cov-2 Mpro inhibitors from large chemical libraries. J Chem Inf Model. 2024;64(6):1984-1995. doi: 10.1021/acs.jcim.3c01439

 

  1. Wong W, Bai XC, Sleebs BE, et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat Microbiol. 2017;2(6):17031. doi: 10.1038/nmicrobiol.2017.31

 

  1. Maas BM, Strizki J, Miller RR, et al. Molnupiravir: Mechanism of action, clinical, and translational science. Clin Transl Sci. 2024;17(2):e13732. doi: 10.1111/cts.13732

 

  1. Kabinger F, Stiller C, Schmitzová J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021;28(9):740-746. doi: 10.1038/s41594-021-00651-0

 

  1. Tan D, Walmsley S. Lopinavir plus ritonavir: A novel protease inhibitor combination for HIV infections. Expert Rev Anti Infect Ther. 2007;5(1):13-28. doi: 10.1586/14787210.5.1.13

 

  1. De Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58(8):4875-4884. doi: 10.1128/AAC.03011-14

 

  1. Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59(3):252-256. doi: 10.1136/thorax.2003.012658

 

  1. Phosrithong N, Ungwitayatorn J. Molecular docking study on anticancer activity of plant-derived natural products. Med Chem Res. 2010;19(8):817-835. doi: 10.1007/s00044-009-9233-5
Share
Back to top
Innovative Medicines & Omics, Electronic ISSN: 3060-8740 Print ISSN: 3060-8910, Published by AccScience Publishing