Potent and selective inhibitory effect of 4-aminoquinoline derivatives on SARS-CoV-2 replication

The global coronavirus disease 2019 (COVID-19) pandemic, caused by the highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), had resulted in significant mortality worldwide. In 2020, the World Health Organization started the solidarity clinical trial to assess the efficacy of four proposed therapeutic strategies, including chloroquine (CQ), a 4-aminoquinoline molecule. However, CQ lacks clinical benefit and, therefore, failed to show in vitro anti-SARS-CoV-2 activity in TMPRSS2-expressing cells, such as Calu-3 cell line, which recapitulate human type II pneumocytes. Nevertheless, other 4-aminoquinoline derivatives have shown high affinity toward the SARS-CoV-2 main protease (Mpro). This study aimed to evaluate, in vitro and in silico, the inhibitory potential of nine 4-aminoquinoline derivatives against SARS-CoV-2, building upon the observed antiviral activity of established antimalarial drugs. We assessed the ability of these derivatives to inhibit SARS-CoV-2 (wild type and Omicron variant) replication in Vero E6 and Calu-3 cell lines. In addition, we conducted docking studies to determine the binding affinity and protein-ligand interactions. Notably, these derivatives exhibited potent antiviral activity with low cytotoxicity in Vero E6 and Calu-3 cell models. In silico investigations targeting the Mpro enzyme supported the potential of the derivatives as promising agents in the fight against SARS-CoV-2. Our findings underscore the potential of these 4-aminoquinoline derivatives as robust inhibitors of SARS-CoV-2 and advocate for further research to explore their therapeutic applications, providing valuable insights for future drug development strategies.
- Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552-555. doi: 10.1002/jmv.25728
- Dhama K, Nainu F, Frediansyah A, et al. Global emerging omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health. 2023;16(1):4-14. doi: 10.1016/j.jiph.2022.11.024
- Ramasamy R. Overview of immunological and virological factors driving the evolution and global spread of SARS- CoV-2 variants. Indian J Med Res. 2023;158(3):257-268. doi: 10.4103/ijmr.ijmr_2591_22
- Xie X, Lan Q, Zhao J, et al. Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Signal Transduct Target Ther. 2024;9(1):54. doi: 10.1038/s41392-024-01758-8
- Hillary VE, Ceasar SA. An update on COVID-19: SARS-CoV-2 variants, antiviral drugs, and vaccines. Heliyon. 2023;9(3):e13952. doi: 10.1016/j.heliyon.2023.e13952
- Alipoor R, Ranjbar R. Small-molecule metabolites in SARS-CoV-2 treatment: A comprehensive review. Biol Chem. 2023;404(6):569-584. doi: 10.1515/hsz-2022-0323
- Zhu J, Zhang H, Lin Q, et al. Progress on SARS-CoV-2 3CLpro Inhibitors: Inspiration from SARS-CoV 3CLpro peptidomimetics and small-molecule anti-inflammatory compounds. Drug Des Devel Ther. 2022;16:1067-1082. doi: 10.2147/DDDT.S359009
- Schimunek J, Seidl P, Elez K, et al. A community effort in SARS-CoV-2 drug discovery. Mol Inform. 2024;43(1):e202300262. doi: 10.1002/minf.202300262
- Meo SA, Klonoff DC, Akram J. Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. Eur Rev Med Pharmacol Sci. 2020;24(8):4539-4547. doi: 10.26355/eurrev_202004_21038
- Lin L, Lu L, Cao W, et al. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727-732. doi: 10.1080/22221751.2020.1746199
- Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020;71(15):732-739. doi: 10.1093/cid/ciaa237
- Quiros Roldan E, Biasiotto G, Magro P, Zanella I. The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against SARS-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res. 2020;158:104904. doi: 10.1016/j.phrs.2020.104904
- Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. Eur J Med Chem. 2023;256:115458. doi: 10.1016/j.ejmech.2023.115458
- Shetty RM, Namachivayam A. Evidence for chloroquine/ hydroxychloroquine in the treatment of COVID-19. Indian J Crit Care Med. 2021;25(4):441-452. doi: 10.5005/jp-journals-10071-23773
- Levin AT, Hanage WP, Owusu-Boaitey N, Cochran KB, Walsh SP, Meyerowitz-Katz G. Assessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020;35(12):1123-1138. doi: 10.1007/s10654-020-00698-1
- Sacramento CQ, Fintelman-Rodrigues N, Dias SS, et al. Unlike chloroquine, mefloquine inhibits SARS-CoV-2 infection in physiologically relevant cells. Viruses. 2022;14(2):374. doi: 10.3390/v14020374
- Malakar S, Sreelatha L, Dechtawewat T, et al. Drug repurposing of quinine as antiviral against dengue virus infection. Virus Res. 2018;255:171-178. doi: 10.1016/j.virusres.2018.07.018
- Al-Bari MA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect. 2017;5(1):e00293. doi: 10.1002/prp2.293
- D’Alessandro S, Scaccabarozzi D, Signorini L, et al. The use of antimalarial drugs against viral infection. Microorganisms. 2020;8(1):85. doi: 10.3390/microorganisms8010085
- Bazotte RB, Hirabara SM, Serdan TA, et al. 4-Aminoquinoline compounds from the Spanish flu to COVID-19. Biomed Pharmacother. 2021;135:111138. doi: 10.1016/j.biopha.2020.111138
- Mizuta S, Mosaddeque F, Tun MM, et al. Challenges based on antiplasmodial and antiviral activities of 7-chloro-4-aminoquinoline derivatives. ChemMedChem. 2023;18(7):e202200586. doi: 10.1002/cmdc.202200586
- Belhassan A, En-Nahli F, Zaki H, Lakhlifi T, Bouachrine M. Assessment of effective imidazole derivatives against SARS-CoV-2 main protease through computational approach. Life Sci. 2020;262:118469. doi: 10.1016/j.lfs.2020.118469
- O’Neill PM, Ward SA, Berry NG, et al. A medicinal chemistry perspective on 4-aminoquinoline antimalarial drugs. Curr Top Med Chem. 2006;6(5):479-507. doi: 10.2174/156802606776743147
- Wu YC, Lu MT, Chu PC, et al. Novel 4-aminoquinoline analogs targeting the HIF-1α signaling pathway. Future Med Chem. 2023;15(17):1569-1582. doi: 10.4155/fmc-2023-0169
- Vausselin T, Séron K, Lavie M, et al. Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J Virol. 2016;90(19):8422-8434. doi: 10.1128/JVI.00404-16
- Ekins S, Freundlich JS, Clark AM, Anantpadma M, Davey RA, Madrid P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Res. 2015;4:1091. doi: 10.12688/f1000research.7217.3
- Hu Q, Xiong Y, Zhu GH, et al. The SARS-CoV-2 main protease (Mpro): Structure, function, and emerging therapies for COVID-19. MedComm (2020). 2022;3(3):e151. doi: 10.1002/mco2.151
- Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science. 2020;368(6489):409-412. doi: 10.1126/science.abb3405
- Achutha AS, Pushpa VL, Suchitra S. Theoretical insights into the anti-SARS-CoV-2 activity of chloroquine and its analogs and in silico screening of main protease inhibitors. J Proteome Res. 2020;9(11):4706-4717. doi: 10.1021/acs.jproteome.0c00683
- Carmo AM, Silva FM, Machado PA, et al. Synthesis of 4-aminoquinoline analogues and their platinum(II) complexes as new antileishmanial and antitubercular agents. Biomed Pharmacother. 2011;65(3):204-209. doi: 10.1016/j.biopha.2011.01.003
- Calixto SL, Glanzmann N, Xavier Silveira MM, et al. Novel organic salts based on quinoline derivatives: The in vitro activity trigger apoptosis inhibiting autophagy in Leishmania spp. Chem Biol Interact. 2018;293:141-151. doi: 10.1016/j.cbi.2018.08.003
- Dludla PV, Jack B, Viraragavan A, et al. A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes. Toxicol Rep. 2018;5:1014-1020. doi: 10.1016/j.toxrep.2018.10.002
- Fintelman-Rodrigues N, Sacramento CQ, Ribeiro Lima C, et al. Atazanavir, alone or in combination with ritonavir, inhibits SARS-CoV-2 replication and proinflammatory cytokine production. Antimicrob Agents Chemother. 2020;64(10):e00825-20. doi: 10.1128/AAC.00825-20
- Chaves OA, Sacramento CQ, Ferreira AC, et al. Atazanavir is a competitive inhibitor of SARS-CoV-2 Mpro, impairing variants replication in vitro and in vivo. Pharmaceuticals (Basel). 2021;15(1):21. doi: 10.3390/ph15010021
- Laboratory Biosafety Guidance Related to Coronavirus Disease (COVID-19): Interim Guidance; 2021. Available from: https://www.who.int/publications/i/item/who-wpe-gih-2021.1 [Last accessed on 2023 Sep 10].
- Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289-293. doi: 10.1038/s41586-020-2223-y
- Goyal B, Goyal D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb Sci. 2020;22(6):297-305. doi: 10.1021/acscombsci.0c00058
- Uzunova K, Filipova E, Pavlova V, et al. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed Pharmacother. 2020;131:110668. doi: 10.1016/j.biopha.2020.110668
- Patel TK, Patel PB, Barvaliya M, et al. Efficacy and safety of lopinavir-ritonavir in COVID-19: A systematic review of randomized controlled trials. J Infect Public Health. 2021;14(6):740-748. doi: 10.1016/j.jiph.2021.03.015
- Habler K, Brügel M, Teupser D, et al. Simultaneous quantification of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir, ritonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC-MS/MS method in human serum. J Pharm Biomed Anal. 2021;196:113935. doi: 10.1016/j.jpba.2021.113935
- Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. [The article was originally published in Adv Drug Deliv Rev. 1997;23:3-25]. Adv Drug Deliv Rev. 2001;46(1-3):3-26. doi: 10.1016/S0169-409X(00)00129-0
- Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002;45(12):2615-2623. doi: 10.1021/jm020017n
- Kelder J, Grootenhuis PD, Bayada DM, Delbressine LP, Ploemen JP. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999;16(10):1514-1519. doi: 10.1023/A:1015040217741
- Zhu Y, Chidekel A, Shaffer TH. Cultured human airway epithelial cells (Calu-3): A model of human respiratory function, structure, and inflammatory responses. Crit Care Res Pract. 2010;2010:394578. doi: 10.1155/2010/394578
- Kumar S, Sarma P, Kaur H, et al. Clinically relevant cell culture models and their significance in isolation, pathogenesis, vaccine development, repurposing and screening of new drugs for SARS-CoV-2: A systematic review. Tissue Cell. 2021;70:101497. doi: 10.1016/j.tice.2021.101497
- Prieto Santamaría L, Díaz Uzquiano M, Ugarte Carro E, Ortiz-Roldán N, Pérez Gallardo Y, Rodríguez-González A. Integrating heterogeneous data to facilitate COVID-19 drug repurposing. Drug Discov Today. 2022;27(2):558-566. doi: 10.1016/j.drudis.2021.10.002
- Siminea N, Popescu V, Sanchez Martin JA, et al. Network analytics for drug repurposing in COVID-19. Brief Bioinform. 2022;23(1):bbab490. doi: 10.1093/bib/bbab490
- Sezer A, Halilović-Alihodžić M, Vanwieren AR, et al. A review on drug repurposing in COVID-19: From antiviral drugs to herbal alternatives. J Genet Eng Biotechnol. 2022;20(1):78. doi: 10.1186/s43141-022-00353-0
- Sinha N, Balayla G. Hydroxychloroquine and COVID-19. Postgrad Med J. 2020;96(1139):550-555. doi: 10.1136/postgradmedj-2020-137785
- Yuan Z, Pavel MA, Wang H, et al. Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture. Commun Biol. 2022;5(1):958. doi: 10.1038/s42003-022-03841-8
- Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6(1):16. doi: 10.1038/s41421-020-0156-0
- Ou T, Mou H, Zhang L, Ojha A, Choe H, Farzan M. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is attenuated by TMPRSS2. PLoS Pathog. 2021;17(1):e1009212. doi: 10.1371/journal.ppat.1009212
- Biot C, Glorian G, Maciejewski LA, Brocard JS. Synthesis and antimalarial activity in vitro and in vivo of a new ferrocene-chloroquine analogue. J Med Chem. 1997;40(23):3715-3718. doi: 10.1021/jm970401y
- Biot C, Daher W, Chavain N, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem. 2006;49:2845-2849. doi: 10.1021/jm0601856
- Vausselin T, Calland N, Belouzard S, et al. The antimalarial ferroquine is an inhibitor of hepatitis C virus. Hepatology. 2013;58(1):86-97. doi: 10.1002/hep.26273
- Marois I, Cloutier A, Meunier I, et al. Inhibition of influenza virus replication by targeting broad host cell pathways. PLoS One. 2014;9(10):e110631. doi: 10.1371/journal.pone.0110631
- Ribeiro Antinarelli LM, Glanzmann N, Mendonça DV, et al. Parasitological and immunological evaluation of a quinoline derivative salt incorporated into a polymeric micelle formulation against Leishmania infantum infection. Parasitol Res. 2022;121(7):2129-2140. doi: 10.1007/s00436-022-07544-1
- De Souza NB, Carmo AM, Lagatta DC, et al. 4-aminoquinoline analogues and its platinum (II) complexes as antimalarial agents. Biomed Pharmacother. 2011;65(4):313-316. doi: 10.1016/j.biopha.2011.03.003
- De Souza NB, Carmo AM, Da Silva AD, et al. Antiplasmodial activity of chloroquine analogs against chloroquine-resistant parasites, docking studies and mechanisms of drug action. Malar J. 2014;13(1):469. doi: 10.1186/1475-2875-13-469
- Bezerra Bellei JC, Glanzmann N, Carpinter BA, et al. A simple quinoline salt derivative is active in vitro against Plasmodium falciparum asexual blood stages and inhibits the development of cerebral malaria in murine model. Chem Biol Interact. 2022;355:109848. doi: 10.1016/j.cbi.2022.109848
- Zhang Q, Xiang R, Huo S, et al. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct Target Ther. 2021;6(1):233. doi: 10.1038/s41392-021-00653-w
- Essalmani R, Jain J, Susan-Resiga D, et al. Distinctive roles of furin and TMPRSS2 in SARS-CoV-2 infectivity. J Virol. 2022;96(8):e0012822. doi: 10.1128/jvi.00128-22
- Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1):3-20. doi: 10.1038/s41580-021-00418-x
- Shapira T, Monreal IA, Dion SP, et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature. 2022;605(7909):340-348. doi: 10.1038/s41586-022-04661-w
- Aiewsakun P, Phumiphanjarphak W, Ludowyke N, et al. Systematic exploration of SARS-CoV-2 adaptation to vero e6, vero E6/TMPRSS2, and calu-3 cells. Genome Biol Evol. 2023;15(4):evad035. doi: 10.1093/gbe/evad035
- Chen Y, Yang WH, Chen HF, et al. Tafenoquine and its derivatives as inhibitors for the severe acute respiratory syndrome coronavirus 2. J Biol Chem. 2022;298(3):101658. doi: 10.1016/j.jbc.2022.101658
- Sacramento CQ, Fintelman-Rodrigues N, Temerozo JR, et al. In vitro antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19. J Antimicrob Chemother. 2021;76(7):1874-1885. doi: 10.1093/jac/dkab072
- Li P, Wang Y, Lavrijsen M, et al. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022;32(3):322-324. doi: 10.1038/s41422-022-00618-w
- Ruiz-Moreno AJ, Cedillo-González R, Cordova-Bahena L, et al. Consensus pharmacophore strategy for identifying novel SARS-Cov-2 Mpro inhibitors from large chemical libraries. J Chem Inf Model. 2024;64(6):1984-1995. doi: 10.1021/acs.jcim.3c01439
- Wong W, Bai XC, Sleebs BE, et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat Microbiol. 2017;2(6):17031. doi: 10.1038/nmicrobiol.2017.31
- Maas BM, Strizki J, Miller RR, et al. Molnupiravir: Mechanism of action, clinical, and translational science. Clin Transl Sci. 2024;17(2):e13732. doi: 10.1111/cts.13732
- Kabinger F, Stiller C, Schmitzová J, et al. Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis. Nat Struct Mol Biol. 2021;28(9):740-746. doi: 10.1038/s41594-021-00651-0
- Tan D, Walmsley S. Lopinavir plus ritonavir: A novel protease inhibitor combination for HIV infections. Expert Rev Anti Infect Ther. 2007;5(1):13-28. doi: 10.1586/14787210.5.1.13
- De Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of middle east respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58(8):4875-4884. doi: 10.1128/AAC.03011-14
- Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59(3):252-256. doi: 10.1136/thorax.2003.012658
- Phosrithong N, Ungwitayatorn J. Molecular docking study on anticancer activity of plant-derived natural products. Med Chem Res. 2010;19(8):817-835. doi: 10.1007/s00044-009-9233-5