AccScience Publishing / IMO / Online First / DOI: 10.36922/imo.2527
Cite this article
47
Download
490
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Recent advances in antioxidant nanomedicines

Bowen Yang1* Jianlin Shi1,2*
Show Less
1 Shanghai Institute of Ceramics, Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, China
2 Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
Submitted: 25 December 2023 | Accepted: 17 January 2024 | Published: 13 February 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC BY-NC 4.0) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Oxidative stress is a common pathogenic factor for various human diseases. Therefore, mitigating or even eliminating oxidative stress by scavenging excessive reactive oxygen species (ROS) at pathological sites is of great importance in disease treatments. Although several molecular antioxidants have been used in clinics for treating oxidative stress-related diseases, their efficacies are still less satisfactory. Due to the advances in chemistry and nanotechnology, various antioxidant nanomedicines with diversified morphologies, structures, and compositions have been developed to trigger antioxidation reactions in lesion regions, mitigating oxidative stress in cells and regulating the inflammatory microenvironments, finally resulting in disease treatment. In this review, recent progresses achieved in this field are summarized and discussed in a comprehensive manner, with an emphasis on the underlying chemical mechanisms by which antioxidant nanomedicines scavenge ROS in response to the specific microenvironments of pathological regions. It is highly expected that a better understanding on the unique chemistry of antioxidant nanomedicines will facilitate the generation of more feasible antioxidant strategies for the treatments of oxidative stress-associated diseases.

Keywords
Nanomedicine
Antioxidant therapy
Oxidative stress
Microenvironment regulation
Funding
National Key R&D Program of China
National Natural Science Foundation of China
Key Research Program of Frontier Sciences, Chinese Academy of Sciences
Basic Research Program of Shanghai Municipal Government
CAMS Innovation Fund for Medical Sciences
Shanghai Rising- Star Program
China National Postdoctoral Program for Innovative Talents
China Postdoctoral Science Foundation
References
  1. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239-247. doi: 10.1038/35041687

 

  1. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: The role of oxidant stress. Circ Res. 2000;87(10):840-844. doi: 10.1161/01.res.87.10.840

 

  1. Phull AR, Nasir B, Haq IU, Kim SJ. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact. 2018;281:121-136. doi: 10.1016/j.cbi.2017.12.024

 

  1. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3(3):205-214. doi: 10.1038/nrd1330

 

  1. Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal. 2016;25(3):119-146. doi: 10.1089/ars.2016.6665

 

  1. Fiocchi C. Inflammatory bowel disease: Etiology and pathogenesis. Gastroenterology. 1998;115(1):182-205. doi: 10.1016/s0016-5085(98)70381-6

 

  1. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4(3):181-189. doi: 10.1038/nri1312

 

  1. Winterbourn CC. Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol. 2008;4(5):278-286. doi: 10.1038/nchembio.85

 

  1. Wu G, Fang YZ, Yang S, Lupton JR, Turner ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134(3):489-492. doi: 10.1093/jn/134.3.489

 

  1. Mates JM, Perez-Gomez C, Nunez de Castro I. Antioxidant enzymes and human diseases. Clin Biochem. 1999;32(8):595-603. doi: 10.1016/s0009-9120(99)00075-2

 

  1. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem. 2015;97:55-74. doi: 10.1016/j.ejmech.2015.04.040

 

  1. Sies H. Oxidative stress: Oxidants and antioxidants. Exp Physiol. 1997;82(2):291-295. doi: 10.1113/expphysiol.1997.sp004024

 

  1. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014;20(7):1126-1167. doi: 10.1089/ars.2012.5149

 

  1. Leyane TS, Jere SW, Houreld NN. Oxidative stress in ageing and chronic degenerative pathologies: Molecular mechanisms involved in counteracting oxidative stress and chronic inflammation. Int J Mol Sci. 2022;23(13):7273. doi: 10.3390/ijms23137273

 

  1. Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(7527):431-435. doi: 10.1038/nature13909

 

  1. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-1070. doi: 10.1161/CIRCRESAHA.110.223545

 

  1. Lee SF, Harris R, Stout-Delgado HW. Targeted antioxidants as therapeutics for treatment of pneumonia in the elderly. Transl Res. 2020;220:43-56. doi: 10.1016/j.trsl.2020.03.002

 

  1. Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. Br J Anaesth. 2011;107(1):57-64. doi: 10.1093/bja/aer093

 

  1. Cuzzocrea S, Riley DP, Caputi AP, Salvemini D. Antioxidant therapy: A new pharmacological approach in shock, inflammation, and ischemia/reperfusion injury. Pharmacol Rev. 2001;53(1):135-159.

 

  1. Forman HJ, Zhang H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat Rev Drug Discov. 2021;20(9):689-709. doi: 10.1038/s41573-021-00233-1

 

  1. Firuzi O, Miri R, Tavakkoli M, Saso L. Antioxidant therapy: Current status and future prospects. Curr Med Chem. 2011;18(25):3871-3888. doi: 10.2174/092986711803414368

 

  1. Suzuki K. Anti-oxidants for therapeutic use: Why are only a few drugs in clinical use? Adv Drug Deliv Rev. 2009;61(4):287-289. doi: 10.1016/j.addr.2009.03.002

 

  1. Salvemini D, Riley DP, Cuzzocrea S. SOD mimetics are coming of age. Nat Rev Drug Discov. 2002;1(5):367-374. doi: 10.1038/nrd796

 

  1. Liu YL, Shi JJ. Antioxidative nanomaterials and biomedical applications. Nano Today. 2019;27:146-177. doi: 10.1016/j.nantod.2019.05.008

 

  1. Karakoti A, Singh S, Dowding JM, Seal S, Self WT. Redox-active radical scavenging nanomaterials. Chem Soc Rev. 2010;39(11):4422-4432. doi: 10.1039/b919677n

 

  1. Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. Nano Res. 2018;11(10):4955-4984. doi: 10.1007/s12274-018-2092-y

 

  1. Yang B, Chen Y, Shi J. Nanocatalytic medicine. Adv Mater. 2019;31(39):e1901778. doi: 10.1002/adma.201901778

 

  1. Xu C, Qu XG. Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 2014;6(3):e90. doi: 10.1038/am.2013.88

 

  1. Yao J, Cheng Y, Zhou M, et al. ROS scavenging Mn(3) O(4) nanozymes for in vivo anti-inflammation. Chem Sci. 2018;9(11):2927-2933. doi: 10.1039/c7sc05476a

 

  1. Wu C, Han X, Feng W, et al. Multi-enzymatic activities of ultrasmall ruthenium oxide for anti-inflammation and neuroprotection. Chem Eng J. 2021;411:128543. doi: 10.1016/j.cej.2021.128543

 

  1. Zhang W, Hu S, Yin JJ, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138(18):5860-5865. doi: 10.1021/jacs.5b12070

 

  1. Yang B, Chen Y, Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem Rev. 2019;119(8):4881-4985. doi: 10.1021/acs.chemrev.8b00626

 

  1. Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev. 2015;115(19):10938-10966. doi: 10.1021/acs.chemrev.5b00046

 

  1. Yang B, Chen Y, Shi J. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Mater Sci Eng R Rep. 2019;137:66-105. doi: 10.1016/j.mser.2019.01.001

 

  1. Lu K, Aung T, Guo N, Weichselbaum R, Lin W. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. 2018;30(37):e1707634. doi: 10.1002/adma.201707634

 

  1. Mout R, Moyano DF, Rana S, Rotello VM. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41(7):2539-2544. doi: 10.1039/c2cs15294k

 

  1. Bhattacharjee K, Prasad BLV. Surface functionalization of inorganic nanoparticles with ligands: A necessary step for their utility. Chem Soc Rev. 2023;52(8):2573-2595. doi: 10.1039/d1cs00876e

 

  1. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem Rev. 2016;116(9):5338-5431. doi: 10.1021/acs.chemrev.5b00589

 

  1. King RE, Bomser JA, Min DB. Bioactivity of resveratrol. Compr Rev Food Sci Food Saf. 2006;5(3):65-70. doi: 10.1111/j.1541-4337.2006.00001.x

 

  1. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G. Curcumin--from molecule to biological function. Angew Chem Int Ed Engl. 2012;51(22):5308-5332. doi: 10.1002/anie.201107724

 

  1. Hao Y, Song K, Tan X, et al. Reactive oxygen species-responsive polypeptide drug delivery system targeted activated hepatic stellate cells to ameliorate liver fibrosis. ACS Nano. 2022;16(12):20739-20757. doi: 10.1021/acsnano.2c07796

 

  1. Pu HL, Chiang WL, Maiti B, et al. Nanoparticles with dual responses to oxidative stress and reduced ph for drug release and anti-inflammatory applications. ACS Nano. 2014;8(2):1213-1221. doi: 10.1021/nn4058787

 

  1. Yang G, Phua SZF, Bindra AK, Zhao Y. Degradability and clearance of inorganic nanoparticles for biomedical applications. Adv Mater. 2019;31(10):e1805730. doi: 10.1002/adma.201805730

 

  1. Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater. 2017;29(9):1604634. doi: 10.1002/adma.201604634

 

  1. He F, Liu Z, Xu J, et al. Black phosphorus nanosheets suppress oxidative damage of stem cells for improved neurological recovery. Chem Eng J. 2023;451:138737. doi: 10.1016/j.cej.2022.138737

 

  1. Bao X, Zhao J, Sun J, Hu M, Yang X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano. 2018;12(9):8882-8892. doi: 10.1021/acsnano.8b04022

 

  1. Nelson BC, Johnson ME, Walker ML, Riley KR, Sims CM. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants (Basel). 2016;5(2):15. doi: 10.3390/antiox5020015

 

  1. Qin Z, Li Y, Gu N. Progress in applications of Prussian blue nanoparticles in biomedicine. Adv Healthc Mater. 2018;7(20):e1800347. doi: 10.1002/adhm.201800347

 

  1. Cheng Y, Cheng C, Yao J, et al. Mn3O4 nanozyme for inflammatory bowel disease therapy. Adv Ther. 2021;4(9):2100081. doi: 10.1002/adtp.202100081

 

  1. Korsvik C, Patil S, Seal S, Self WT. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun (Camb). 2007;(10):1056- 1058. doi: 10.1039/b615134e

 

  1. Pirmohamed T, Dowding JM, Singh S, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb). 2010;46(16):2736-2738. doi: 10.1039/b922024k

 

  1. Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-based therapeutic antioxidants for biomedical applications. Adv Mater. 2023;35(n/a):e2210819. doi: 10.1002/adma.202210819

 

  1. Murray CJ, Lopez AD. Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet. 1997;349(9063):1436-1442. doi: 10.1016/S0140-6736(96)07495-8

 

  1. Izzo C, Vitillo P, Di Pietro P, et al. The role of oxidative stress in cardiovascular aging and cardiovascular diseases. Life (Basel). 2021;11(1):60. doi: 10.3390/life11010060

 

  1. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389(10065):197-210. doi: 10.1016/S0140-6736(16)30677-8

 

  1. Chen YR, Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res. 2014;114(3):524-537. doi: 10.1161/CIRCRESAHA.114.300559

 

  1. Nishikido T, Oyama J, Shiraki A, Komoda H, Node K. Deletion of apoptosis inhibitor of macrophage (AIM)/ CD5L attenuates the inflammatory response and infarct size in acute myocardial infarction. J Am Heart Assoc. 2016;5(4):e002863. doi: 10.1161/JAHA.115.002863

 

  1. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255-265. doi: 10.1038/nrcardio.2014.28

 

  1. Rodrigo R, Prieto JC, Castillo R. Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n-3 fatty acids: Molecular mechanisms and potential clinical applications. Clin Sci (Lond). 2013;124(1):1-15. doi: 10.1042/CS20110663

 

  1. Roubille F, Lacampagne A. New drug avenues for cardioprotection in patients with acute myocardial infarction. Am J Cardiovasc Drugs. 2014;14(1):73-77. doi: 10.1007/s40256-013-0049-9

 

  1. Hardy N, Viola HM, Johnstone VP, et al. Nanoparticle-mediated dual delivery of an antioxidant and a peptide against the L-Type Ca2+ channel enables simultaneous reduction of cardiac ischemia-reperfusion injury. ACS Nano. 2015;9(1):279-289. doi: 10.1021/nn5061404

 

  1. Guo J, Yang Z, Lu Y, et al. An antioxidant system through conjugating superoxide dismutase onto metal-organic framework for cardiac repair. Bioact Mater. 2022;10:56-67. doi: 10.1016/j.bioactmat.2021.08.019

 

  1. Cavallini C, Vitiello G, Adinolfi B, et al. Melanin and melanin-like hybrid materials in regenerative medicine. Nanomaterials (Basel). 2020;10(8):1518. doi: 10.3390/nano10081518

 

  1. Zhou J, Liu W, Zhao X, et al. Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization. Adv Sci (Weinh). 2021;8(20):e2100505. doi: 10.1002/advs.202100505

 

  1. D’Ischia M, Napolitano A, Pezzella A, Meredith P, Sarna T. Chemical and structural diversity in eumelanins: Unexplored bio-optoelectronic materials. Angew Chem Int Ed Engl. 2009;48(22):3914-3921. doi: 10.1002/anie.200803786

 

  1. Mo XH, Xiang HJ, Wei L, et al. Nature-inspired allomelanin nanomedicine alleviates cardiac ischemia/reperfusion injury via scavenging free radicals and ameliorating myocardial microenvironment. Nano Today. 2022;46:101589. doi: 10.1016/j.nantod.2022.101589

 

  1. Hao T, Li J, Yao F, et al. Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair. ACS Nano. 2017;11(6):5474-5488. doi: 10.1021/acsnano.7b00221

 

  1. Im GB, Kim YG, Yoo TY, et al. Ceria nanoparticles as copper chaperones that activate SOD1 for synergistic antioxidant therapy to treat ischemic vascular diseases. Adv Mater. 2023;35(16):e2208989. doi: 10.1002/adma.202208989

 

  1. Pagliari F, Mandoli C, Forte G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6(5):3767-3775. doi: 10.1021/nn2048069

 

  1. Blum RH, Carter SK. Adriamycin. A new anticancer drug with significant clinical activity. Ann Intern Med. 1974;80(2):249-259. doi: 10.7326/0003-4819-80-2-249

 

  1. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339(13):900-905. doi: 10.1056/NEJM199809243391307

 

  1. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56(2):185-229. doi: 10.1124/pr.56.2.6

 

  1. Fang X, Wang H, Han D, et al. Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci U S A. 2019;116(7):2672-2680. doi: 10.1073/pnas.1821022116

 

  1. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751-760. doi: 10.1038/nnano.2007.387

 

  1. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157-170. doi: 10.1111/j.2042-7158.2012.01567.x

 

  1. Park S, Yoon J, Bae S, et al. Therapeutic use of H2O2-responsive anti-oxidant polymer nanoparticles for doxorubicin-induced cardiomyopathy. Biomaterials. 2014;35(22):5944-5953. doi: 10.1016/j.biomaterials.2014.03.084

 

  1. Huo M, Tang Z, Wang L, et al. Magnesium hexacyanoferrate nanocatalysts attenuate chemodrug-induced cardiotoxicity through an anti-apoptosis mechanism driven by modulation of ferrous iron. Nat Commun. 2022;13(1):7778. doi: 10.1038/s41467-022-35503-y

 

  1. Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233-241. doi: 10.1038/35025203

 

  1. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473(7347):317-325. doi: 10.1038/nature10146

 

  1. Weber C, Noels H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat Med. 2011;17(11):1410-1422. doi: 10.1038/nm.2538

 

  1. Tyrrell DJ, Goldstein DR. Ageing and atherosclerosis: Vascular intrinsic and extrinsic factors and potential role of IL-6. Nat Rev Cardiol. 2021;18(1):58-68. doi: 10.1038/s41569-020-0431-7

 

  1. Koelwyn GJ, Corr EM, Erbay E, Moore KJ. Regulation of macrophage immunometabolism in atherosclerosis. Nat Immunol. 2018;19(6):526-537. doi: 10.1038/s41590-018-0113-3

 

  1. Thomas SR, Witting PK, Stocker R. A role for reduced coenzyme Q in atherosclerosis? Biofactors. 1999;9(2-4):207-224. doi: 10.1002/biof.5520090216

 

  1. Salonen RM, Nyyssonen K, Kaikkonen J, et al. Six-year effect of combined vitamin C and E supplementation on atherosclerotic progression: The antioxidant supplementation in atherosclerosis prevention (ASAP) study. Circulation. 2003;107(7):947-953. doi: 10.1161/01.cir.0000050626.25057.51

 

  1. Zimetbaum P, Eder H, Frishman W. Probucol: Pharmacology and clinical application. J Clin Pharmacol. 1990;30(1):3-9. doi: 10.1002/j.1552-4604.1990.tb03431.x

 

  1. Yamakoshi J, Kataoka S, Koga T, Ariga T. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis. 1999;142(1):139-149. doi: 10.1016/s0021-9150(98)00230-5

 

  1. Kim CH, Mitchell JB, Bursill CA, et al. The nitroxide radical TEMPOL prevents obesity, hyperlipidaemia, elevation of inflammatory cytokines, and modulates atherosclerotic plaque composition in apoE-/- mice. Atherosclerosis. 2015;240(1):234-241. doi: 10.1016/j.atherosclerosis.2015.03.012

 

  1. Sugamura K, Keaney JF Jr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med. 2011;51(5):978-992. doi: 10.1016/j.freeradbiomed.2011.05.004

 

  1. Lobatto ME, Fuster V, Fayad ZA, Mulder WJ. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nat Rev Drug Discov. 2011;10(11):835-852. doi: 10.1038/nrd3578

 

  1. Chen J, Zhang X, Millican R, et al. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev. 2021;170:142-199. doi: 10.1016/j.addr.2021.01.005

 

  1. Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol. 2022;19(4):228-249. doi: 10.1038/s41569-021-00629-x

 

  1. Maruf A, Wang Y, Yin T, et al. Atherosclerosis treatment with stimuli-responsive nanoagents: Recent advances and future perspectives. Adv Healthc Mater. 2019;8(11):e1900036. doi: 10.1002/adhm.201900036

 

  1. Lobatto ME, Calcagno C, Millon A, et al. Atherosclerotic plaque targeting mechanism of long-circulating nanoparticles established by multimodal imaging. ACS Nano. 2015;9(2):1837-1847. doi: 10.1021/nn506750r

 

  1. Smith BR. Nanotherapeutics for cardiovascular disease. Nat Rev Cardiol. 2021;18(9):617-618. doi: 10.1038/s41569-021-00594-5

 

  1. Wang Y, Li L, Zhao W, et al. Targeted therapy of atherosclerosis by a broad-spectrum reactive oxygen species scavenging nanoparticle with intrinsic anti-inflammatory activity. ACS Nano. 2018;12(9):8943-8960. doi: 10.1021/acsnano.8b02037

 

  1. Wang S, Zhang J, Li W, et al. Hyaluronic acid-guided assembly of ceria nanozymes as plaque-targeting ROS scavengers for anti-atherosclerotic therapy. Carbohydr Polym. 2022;296:119940. doi: 10.1016/j.carbpol.2022.119940

 

  1. Parayath NN, Parikh A, Amiji MM. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating MicroRNA-125b. Nano Lett. 2018;18(6):3571-3579. doi: 10.1021/acs.nanolett.8b00689

 

  1. Mu D, Li J, Qi Y, et al. Hyaluronic acid-coated polymeric micelles with hydrogen peroxide scavenging to encapsulate statins for alleviating atherosclerosis. J Nanobiotechnology. 2020;18(1):179. doi: 10.1186/s12951-020-00744-w

 

  1. Chen X, Dai C, Hu R, Yu L, Chen Y, Zhang B. Engineering ROS-scavenging Prussian blue nanozymes for efficient atherosclerosis nanotherapy. J Mater Chem B. 2023;11(9):1881-1890. doi: 10.1039/d2tb02661a

 

  1. Yang Q, Jiang H, Wang Y, et al. Plaque macrophage-targeting nanosystems with cooperative co-regulation of ROS and TRAF6 for stabilization of atherosclerotic plaques. Adv Funct Mater. 2023;33:2301053. doi: 10.1002/adfm.202301053

 

  1. Mizushima N, Komatsu M. Autophagy: Renovation of cells and tissues. Cell. 2011;147(4):728-741. doi: 10.1016/j.cell.2011.10.026

 

  1. Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330(6009):1344-1348. doi: 10.1126/science.1193497

 

  1. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717-1721. doi: 10.1126/science.290.5497.1717

 

  1. Guo FX, Wu Q, Li P, et al. The role of the LncRNA-FA2H-2- MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ. 2019;26(9):1670-1687. doi: 10.1038/s41418-018-0235-z

 

  1. Bravo-San Pedro JM, Kroemer G, Galluzzi L. Autophagy and mitophagy in cardiovascular disease. Circ Res. 2017;120(11):1812-1824. doi: 10.1161/CIRCRESAHA.117.311082

 

  1. Wu Z, Zhou M, Tang X, et al. Carrier-free trehalose-based nanomotors targeting macrophages in inflammatory plaque for treatment of atherosclerosis. ACS Nano. 2022;16(3):3808-3820. doi: 10.1021/acsnano.1c08391

 

  1. Segawa K, Nagata S. An apoptotic “eat me” signal: Phosphatidylserine exposure. Trends Cell Biol. 2015;25(11):639-650. doi: 10.1016/j.tcb.2015.08.003

 

  1. Wang PG, Xian M, Tang X, et al. Nitric oxide donors: Chemical activities and biological applications. Chem Rev. 2002;102(4):1091-1134. doi: 10.1021/cr000040l

 

  1. Carpenter AW, Schoenfisch MH. Nitric oxide release: Part II. Therapeutic applications. Chem Soc Rev. 2012;41(10):3742-3752. doi: 10.1039/c2cs15273h

 

  1. Sciarretta S, Yee D, Nagarajan N, et al. Trehalose-induced activation of autophagy improves cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2018;71(18):1999-2010. doi: 10.1016/j.jacc.2018.02.066

 

  1. Hu R, Dai C, Dong C, et al. Living macrophage-delivered tetrapod PdH nanoenzyme for targeted atherosclerosis management by ROS scavenging, hydrogen anti-inflammation, and autophagy activation. ACS Nano. 2022;16(10):15959-15976. doi: 10.1021/acsnano.2c03422

 

  1. Ouriel K. Peripheral arterial disease. Lancet. 2001;358(9289):1257-1264. doi: 10.1016/S0140-6736(01)06351-6

 

  1. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509-1526. doi: 10.1161/CIRCRESAHA.116.303849

 

  1. Koutakis P, Ismaeel A, Farmer P, et al. Oxidative stress and antioxidant treatment in patients with peripheral artery disease. Physiol Rep. 2018;6(7):e13650. doi: 10.14814/phy2.13650

 

  1. Brevetti G, Giugliano G, Brevetti L, Hiatt WR. Inflammation in peripheral artery disease. Circulation. 2010;122(18):1862-1875. doi: 10.1161/CIRCULATIONAHA.109.918417

 

  1. Violi F, Loffredo L, Mancini A, Marcoccia A. Antioxidants in peripheral arterial disease. Curr Drug Targets. 2003;4(8):651-655. doi: 10.2174/1389450033490786

 

  1. Giannopoulos G, Angelidis C, Vogiatzi G, Cleman MW, Deftereos S. Antioxidant treatment in peripheral artery disease: The rationale is there, but what about clinical results? Curr Opin Pharmacol. 2018;39:53-59. doi: 10.1016/j.coph.2018.01.008

 

  1. Jung E, Lee J, Jeong L, et al. Stimulus-activatable echogenic maltodextrin nanoparticles as nanotheranostic agents for peripheral arterial disease. Biomaterials. 2019;192:282-291. doi: 10.1016/j.biomaterials.2018.11.022

 

  1. Guo J, Ping Y, Ejima H, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks. Angew Chem Int Ed Engl. 2014;53(22):5546-5551. doi: 10.1002/anie.201311136

 

  1. Rahim MA, Kristufek SL, Pan S, Richardson JJ, Caruso F. Phenolic building blocks for the assembly of functional materials. Angew Chem Int Ed Engl. 2019;58(7):1904-1927. doi: 10.1002/anie.201807804

 

  1. Zhou J, Lin Z, Ju Y, Rahim MA, Richardson JJ, Caruso F. Polyphenol-mediated assembly for particle engineering. Acc Chem Res. 2020;53(7):1269-1278. doi: 10.1021/acs.accounts.0c00150

 

  1. Duan J, Chen Z, Liang X, et al. Construction and application of therapeutic metal-polyphenol capsule for peripheral artery disease. Biomaterials. 2020;255:120199. doi: 10.1016/j.biomaterials.2020.120199

 

  1. Mokra D, Joskova M, Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int J Mol Sci. 2022;24(1):340. doi: 10.3390/ijms24010340

 

  1. Mandinov L, Mandinova A, Kyurkchiev S, et al. Copper chelation represses the vascular response to injury. Proc Natl Acad Sci U S A. 2003;100(11):6700-6705. doi: 10.1073/pnas.1231994100

 

  1. Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation. 2005;111(6):816-828. doi: 10.1161/01.CIR.0000154569.08857.7A

 

  1. Kent KC. Clinical practice. Abdominal aortic aneurysms. N Engl J Med. 2014;371(22):2101-2108. doi: 10.1056/NEJMcp1401430

 

  1. Schanzer A, Oderich GS. Management of abdominal aortic aneurysms. N Engl J Med. 2021;385(18):1690-1698. doi: 10.1056/NEJMcp2108504

 

  1. Chaikof EL, Dalman RL, Eskandari MK, et al. The society for vascular surgery practice guidelines on the care of patients with an abdominal aortic aneurysm. J Vasc Surg. 2018;67(1):2-77.e2. doi: 10.1016/j.jvs.2017.10.044

 

  1. McCormick ML, Gavrila D, Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2007;27(3):461-469. doi: 10.1161/01.ATV.0000257552.94483.14

 

  1. Miller FJ Jr., Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: A potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol. 2002;22(4):560-565. doi: 10.1161/01.atv.0000013778.72404.30

 

  1. Shimizu K, Mitchell RN, Libby P. Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006;26(5):987-994. doi: 10.1161/01.ATV.0000214999.12921.4f

 

  1. Gao J, Cao H, Hu G, et al. The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther. 2023;8(1):55. doi: 10.1038/s41392-023-01325-7

 

  1. Lin W, Hu K, Li C, et al. A multi-bioactive nanomicelle-based “one stone for multiple birds” strategy for precision therapy of abdominal aortic aneurysms. Adv Mater. 2022;34(44):e2204455. doi: 10.1002/adma.202204455

 

  1. Wilcox CS, Pearlman A. Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev. 2008;60(4):418-469. doi: 10.1124/pr.108.000240

 

  1. LeMaire SA, Russell L. Epidemiology of thoracic aortic dissection. Nat Rev Cardiol. 2011;8(2):103-113. doi: 10.1038/nrcardio.2010.187

 

  1. Nienaber CA, Clough RE. Management of acute aortic dissection. Lancet. 2015;385(9970):800-811. doi: 10.1016/S0140-6736(14)61005-9

 

  1. Fan LM, Douglas G, Bendall JK, et al. Endothelial cell-specific reactive oxygen species production increases susceptibility to aortic dissection. Circulation. 2014;129(25):2661-2672. doi: 10.1161/CIRCULATIONAHA.113.005062

 

  1. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938-949. doi: 10.1056/NEJMra0801082

 

  1. Gailani D, Renne T. The intrinsic pathway of coagulation: A target for treating thromboembolic disease? J Thromb Haemost. 2007;5(6):1106-1112. doi: 10.1111/j.1538-7836.2007.02446.x

 

  1. Wendelboe AM, Raskob GE. Global burden of thrombosis: Epidemiologic aspects. Circ Res. 2016;118(9):1340-1347. doi: 10.1161/CIRCRESAHA.115.306841

 

  1. Absar S, Gupta N, Nahar K, Ahsan F. Engineering of plasminogen activators for targeting to thrombus and heightening thrombolytic efficacy. J Thromb Haemost. 2015;13(9):1545-1556. doi: 10.1111/jth.13033

 

  1. Gaffney PJ. Tissue plasminogen activator for thrombolytic therapy: Expectation versus reality. J R Soc Med. 1992;85(11):692-698. doi: 10.1177/014107689208501112

 

  1. Shi K, Zou M, Jia DM, et al. tPA mobilizes immune cells that exacerbate hemorrhagic transformation in stroke. Circ Res. 2021;128(1):62-75. doi: 10.1161/CIRCRESAHA.120.317596

 

  1. Greer IA. Clinical practice. Pregnancy complicated by venous thrombosis. N Engl J Med. 2015;373(6):540-547. doi: 10.1056/NEJMcp1407434

 

  1. Su M, Dai Q, Chen C, Zeng Y, Chu C, Liu G. Nano-medicine for thrombosis: A precise diagnosis and treatment strategy. Nanomicro Lett. 2020;12(1):96. doi: 10.1007/s40820-020-00434-0

 

  1. Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials. 2020;258:120297. doi: 10.1016/j.biomaterials.2020.120297

 

  1. Cheng J, Zhang S, Li C, et al. Functionally integrating nanoparticles alleviate deep vein thrombosis in pregnancy and rescue intrauterine growth restriction. Nat Commun. 2022;13(1):7166. doi: 10.1038/s41467-022-34878-2

 

  1. Xu L, Luo Y, Du Q, et al. Magnetic response combined with bioactive ion therapy: A RONS-scavenging theranostic nanoplatform for thrombolysis and renal ischemia-reperfusion injury. ACS Nano. 2023;17(6):5695-5712. doi: 10.1021/acsnano.2c12091

 

  1. Chandler AB, Chapman I, Erhardt LR, et al. Coronary thrombosis in myocardial infarction. Report of a workshop on the role of coronary thrombosis in the pathogenesis of acute myocardial infarction. Am J Cardiol. 1974;34(7):823-833. doi: 10.1016/0002-9149(74)90703-6

 

  1. Guo X, Hong T, Zang J, et al. Thrombus-specific/ responsive biomimetic nanomedicine for spatiotemporal thrombolysis and alleviation of myocardial ischemia/ reperfusion injury. J Nanobiotechnology. 2022;20(1):531. doi: 10.1186/s12951-022-01686-1

 

  1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423(6937):356-361. doi: 10.1038/nature01661

 

  1. Li RQ, Ma Y, Hong J, Ding Y. Nanoengineered therapy aiming at the etiology of rheumatoid arthritis. Nano Today. 2022;42:101367. doi: 10.1016/j.nantod.2021.101367

 

  1. Tardito S, Martinelli G, Soldano S, et al. Macrophage M1/ M2 polarization and rheumatoid arthritis: A systematic review. Autoimmun Rev. 2019;18(11):102397. doi: 10.1016/j.autrev.2019.102397

 

  1. Zhu Y, Zhao TJ, Liu M, et al. Rheumatoid arthritis microenvironment insights into treatment effect of nanomaterials. Nano Today. 2022;42:101358. doi: 10.1016/j.nantod.2021.101358

 

  1. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A review. JAMA. 2018;320(13):1360-1372. doi: 10.1001/jama.2018.13103

 

  1. Yuan F, Quan LD, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev. 2012;64(12):1205-1219. doi: 10.1016/j.addr.2012.03.006

 

  1. Wang S, Lv J, Meng S, Tang J, Nie L. Recent advances in nanotheranostics for treat-to-target of rheumatoid arthritis. Adv Healthc Mater. 2020;9(6):e1901541. doi: 10.1002/adhm.201901541

 

  1. Ma Y, Lu Z, Jia B, et al. DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging. ACS Nano. 2022;16(8):12520-12531. doi: 10.1021/acsnano.2c03991

 

  1. Xu C, Wang S, Wang H, et al. Magnesium-based micromotors as hydrogen generators for precise rheumatoid arthritis therapy. Nano Lett. 2021;21(5):1982-1991. doi: 10.1021/acs.nanolett.0c04438

 

  1. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM. Anti-inflammatory properties of cerium oxide nanoparticles. Small. 2009;5(24):2848-2856. doi: 10.1002/smll.200901048

 

  1. Jeong HG, Cha BG, Kang DW, et al. Ceria nanoparticles fabricated with 6-aminohexanoic acid that overcome systemic inflammatory response syndrome. Adv Healthc Mater. 2019;8(9):e1801548. doi: 10.1002/adhm.201801548

 

  1. Kim J, Kim HY, Song SY, et al. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for rheumatoid arthritis treatment. ACS Nano. 2019;13(3):3206-3217. doi: 10.1021/acsnano.8b08785

 

  1. Roubenoff R, Freeman LM, Smith DE, Abad LW, Dinarello CA, Kehayias JJ. Adjuvant arthritis as a model of inflammatory cachexia. Arthritis Rheum. 1997;40(3):534-539. doi: 10.1002/art.1780400320

 

  1. Xu C, Jiang Y, Wang H, et al. Arthritic microenvironment actuated nanomotors for active rheumatoid arthritis therapy. Adv Sci (Weinh). 2023;10(4):e2204881. doi: 10.1002/advs.202204881

 

  1. Guo L, Zhong S, Liu P, Guo M, Ding J, Zhou W. Radicals scavenging MOFs enabling targeting delivery of siRNA for rheumatoid arthritis therapy. Small. 2022;18(27):e2202604. doi: 10.1002/smll.202202604

 

  1. Yang B, Yao H, Yang J, Chen C, Shi J. Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment. Nat Commun. 2022;13(1):1988. doi: 10.1038/s41467-022-29735-1

 

  1. Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins--from superoxide dismutation to H2O2-driven pathways. Redox Biol. 2015;5:43-65. doi: 10.1016/j.redox.2015.01.017

 

  1. Tovmasyan A, Sheng H, Weitner T, et al. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract. 2013;22(2):103-130. doi: 10.1159/000341715

 

  1. Batinic-Haberle I, Tovmasyan A, Spasojevic I. Mn porphyrin-based redox-active drugs: Differential effects as cancer therapeutics and protectors of normal tissue against oxidative injury. Antioxid Redox Signal. 2018;29(16):1691-1724. doi: 10.1089/ars.2017.7453

 

  1. Yang B, Shi J. Defect engineering of mesoporous silica nanoparticles for biomedical applications. Accounts Mater Res. 2021;2(8):581-593. doi: 10.1021/accountsmr.1c00055

 

  1. Garstang SV, Stitik TP. Osteoarthritis: Epidemiology, risk factors, and pathophysiology. Am J Phys Med Rehabil. 2006;85(11 Suppl):S2-11; quiz S12-S14. doi: 10.1097/01.phm.0000245568.69434.1a

 

  1. Sharma L, Kapoor D, Issa S. Epidemiology of osteoarthritis: An update. Curr Opin Rheumatol. 2006;18(2):147-156. doi: 10.1097/01.bor.0000209426.84775.f8

 

  1. Altman RD. Osteoarthritis. Differentiation from rheumatoid arthritis, causes of pain, treatment. Postgrad Med. 1990;87(3):66-72, 77-78. doi: 10.1080/00325481.1990.11704582

 

  1. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys Acta. 2016;1862(4):576-591. doi: 10.1016/j.bbadis.2016.01.003

 

  1. McAlindon TE, Bannuru RR, Sullivan MC, et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage. 2014;22(3):363-88. doi: 10.1016/j.joca.2014.01.003

 

  1. Cheuk YC, Fu SC, Mok SW, Ho KK, Hung LK, Chan KM. Intra-articular injection of an antioxidant formulation did not improve structural degeneration in a rat model of post-traumatic osteoarthritis. J Orthop Translat. 2017;8:25-31. doi: 10.1016/j.jot.2016.08.001

 

  1. Elmali N, Esenkaya I, Harma A, Ertem K, Turkoz Y, Mizrak B. Effect of resveratrol in experimental osteoarthritis in rabbits. Inflamm Res. 2005;54(4):158-162. doi: 10.1007/s00011-004-1341-6

 

  1. Natarajan V, Madhan B, Tiku ML. Intra-articular injections of polyphenols protect articular cartilage from inflammation-induced degradation: Suggesting a potential role in cartilage therapeutics. PLoS One. 2015;10(6):e0127165. doi: 10.1371/journal.pone.0127165

 

  1. Howard MD, Hood ED, Zern B, Shuvaev VV, Grosser T, Muzykantov VR. Nanocarriers for vascular delivery of anti-inflammatory agents. Annu Rev Pharmacol Toxicol. 2014;54:205-226. doi: 10.1146/annurev-pharmtox-011613-140002

 

  1. Gui T, Luo L, Chhay B, et al. Superoxide dismutase-loaded porous polymersomes as highly efficient antioxidant nanoparticles targeting synovium for osteoarthritis therapy. Biomaterials. 2022;283:121437. doi: 10.1016/j.biomaterials.2022.121437

 

  1. Zhou F, Mei J, Yang S, et al. Modified ZIF-8 nanoparticles attenuate osteoarthritis by reprogramming the metabolic pathway of synovial macrophages. ACS Appl Mater Interfaces. 2020;12(2):2009-2022. doi: 10.1021/acsami.9b16327

 

  1. Zhao C, Chen J, Ye J, et al. Structural transformative antioxidants for dual-responsive anti-inflammatory delivery and photoacoustic inflammation imaging. Angew Chem Int Ed Engl. 2021;60(26):14458-14466. doi: 10.1002/anie.202100873

 

  1. Yang B, Yin J, Chen Y, et al. 2D-black-phosphorus-reinforced 3D-printed scaffolds: A stepwise countermeasure for osteosarcoma. Adv Mater. 2018;30(10):1705611. doi: 10.1002/adma.201705611

 

  1. Lu H, Wei J, Liu K, et al. Radical-scavenging and subchondral bone-regenerating nanomedicine for osteoarthritis treatment. ACS Nano. 2023;17(6):6131-6146. doi: 10.1021/acsnano.3c01789

 

  1. Kumar S, Adjei IM, Brown SB, Liseth O, Sharma B. Manganese dioxide nanoparticles protect cartilage from inflammation-induced oxidative stress. Biomaterials. 2019;224:119467. doi: 10.1016/j.biomaterials.2019.119467

 

  1. Klibanski A, Adams-Campbell L, Bassford T, et al. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785-795.

 

  1. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: Now and the future. Lancet. 2011;377(9773):1276-1287. doi: 10.1016/S0140-6736(10)62349-5

 

  1. Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med. 1995;332(5):305-311. doi: 10.1056/NEJM199502023320506

 

  1. Bax BE, Alam AS, Banerji B, et al. Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochem Biophys Res Commun. 1992;183(3):1153-1158. doi: 10.1016/s0006-291x(05)80311-0

 

  1. Agidigbi TS, Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS-mediated osteoclast diseases. Int J Mol Sci. 2019;20(14):3576. doi: 10.3390/ijms20143576

 

  1. Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000;289(5484):1504-1508. doi: 10.1126/science.289.5484.1504

 

  1. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289(5484):1508-1514. doi: 10.1126/science.289.5484.1508

 

  1. Reid IR, Billington EO. Drug therapy for osteoporosis in older adults. Lancet. 2022;399(10329):1080-1092. doi: 10.1016/S0140-6736(21)02646-5

 

  1. Ye C, Zhang W, Zhao Y, et al. Prussian blue nanozyme normalizes microenvironment to delay osteoporosis. Adv Healthc Mater. 2022;11(19):e2200787. doi: 10.1002/adhm.202200787

 

  1. Tian Q, Wang W, Cao L, et al. Multifaceted catalytic ROS-scavenging via electronic modulated metal oxides for regulating stem cell fate. Adv Mater. 2022;34(43):e2207275. doi: 10.1002/adma.202207275

 

  1. Wu Z, Sun Y, Mu S, et al. Manganese-based antioxidase-inspired biocatalysts with axial Mn-N5 Sites and 2D d-pi-conjugated networks for rescuing stem cell fate. Angew Chem Int Ed Engl. 2023;62:e202302329. doi: 10.1002/anie.202302329

 

  1. Terstappen GC, Meyer AH, Bell RD, Zhang W. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov. 2021;20(5):362-383. doi: 10.1038/s41573-021-00139-y

 

  1. Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46):e1801362. doi: 10.1002/adma.201801362
  2. Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev. 2019;48(11):2967-3014. doi: 10.1039/c8cs00805a

 

  1. Krol S, Macrez R, Docagne F, et al. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev. 2013;113(3):1877-1903. doi: 10.1021/cr200472g

 

  1. Butterfield DA, Halliwell B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 2019;20(3):148-160. doi: 10.1038/s41583-019-0132-6

 

  1. Blennow K, de Leon MJ, Zetterberg H. Alzheimer’s disease. Lancet. 2006;368(9533):387-403. doi: 10.1016/S0140-6736(06)69113-7

 

  1. Tonnies E, Trushina E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J Alzheimers Dis. 2017;57(4):1105-1121. doi: 10.3233/JAD-161088

 

  1. Liu Y, Nguyen M, Robert A, Meunier B. Metal ions in Alzheimer’s disease: A key role or not? Acc Chem Res. 2019;52(7):2026-2035. doi: 10.1021/acs.accounts.9b00248

 

  1. Gaggelli E, Kozlowski H, Valensin D, Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev. 2006;106(6):1995-2044. doi: 10.1021/cr040410w

 

  1. Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12(10):383-388. doi: 10.1016/0165-6147(91)90609-v

 

  1. Kepp KP. Bioinorganic chemistry of Alzheimer’s disease. Chem Rev. 2012;112(10):5193-5239. doi: 10.1021/cr300009x

 

  1. Huang X, Atwood CS, Hartshorn MA, et al. The A beta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry. 1999;38(24):7609-7616. doi: 10.1021/bi990438f

 

  1. Huang X, Cuajungco MP, Atwood CS, et al. Cu(II) potentiation of Alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem. 1999;274(52):37111-3716. doi: 10.1074/jbc.274.52.37111

 

  1. Mondragon-Rodriguez S, Perry G, Zhu X, Moreira PI, Acevedo-Aquino MC, Williams S. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: Implications for Alzheimer’s disease. Oxid Med Cell Longev. 2013;2013:940603. doi: 10.1155/2013/940603

 

  1. Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003;348(14):1333-1341. doi: 10.1056/NEJMoa013128

 

  1. Zhang L, Zhao P, Yue C, et al. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer’s disease. Biomaterials. 2019;197:393-404. doi: 10.1016/j.biomaterials.2019.01.037

 

  1. Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD. Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2009;106(34):14670-14675. doi: 10.1073/pnas.0903563106

 

  1. Qian K, Bao X, Li Y, et al. Cholinergic neuron targeting nanosystem delivering hybrid peptide for combinatorial mitochondrial therapy in Alzheimer’s disease. ACS Nano. 2022;16(7):11455-11472. doi: 10.1021/acsnano.2c05795

 

  1. Kwon HJ, Cha MY, Kim D, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer’s disease. ACS Nano. 2016;10(2):2860-2870. doi: 10.1021/acsnano.5b08045

 

  1. Zeng F, Wu Y, Li X, et al. Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia. Angew Chem Int Ed Engl. 2018;57(20):5808-5812. doi: 10.1002/anie.201802309

 

  1. Chen Q, Du Y, Zhang K, et al. Tau-targeted multifunctional nanocomposite for combinational therapy of Alzheimer’s disease. ACS Nano. 2018;12(2):1321-1338. doi: 10.1021/acsnano.7b07625

 

  1. Cai X, Zhang K, Xie X, et al. Self-assembly hollow manganese Prussian white nanocapsules attenuate Tau-related neuropathology and cognitive decline. Biomaterials. 2020;231:119678. doi: 10.1016/j.biomaterials.2019.119678

 

  1. Gao N, Dong K, Zhao AD, et al. Polyoxometalate-based nanozyme: Design of a multifunctional enzyme for multi-faceted treatment of Alzheimer’s disease. Nano Res. 2016;9(4):1079-1090. doi: 10.1007/s12274-016-1000-6

 

  1. Lotharius J, Brundin P. Pathogenesis of Parkinson’s disease: Dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci. 2002;3(12):932-942. doi: 10.1038/nrn983

 

  1. Gerard C, Chehhal H, Hugel RP. Complexes of iron(III) with ligands of biological interest: Dopamine and 8-hydroxyquinoline-5-sulphonic acid. Polyhedron. 1994;13(4):541-597. doi: 10.1016/s0277-5387(00)84736-1

 

  1. Sulzer D, Bogulavsky J, Larsen KE, et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci U S A. 2000;97(22):11869-11874. doi: 10.1073/pnas.97.22.11869

 

  1. Double KL, Gerlach M, Schunemann V, et al. Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem Pharmacol. 2003;66(3):489-494. doi: 10.1016/s0006-2952(03)00293-4

 

  1. Perez RG, Waymire JC, Lin E, Liu JJ, Guo F, Zigmond MJ. A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 2002;22(8):3090-3099. doi: 10.1523/JNEUROSCI.22-08-03090.2002

 

  1. Hely MA, Fung VS, Morris JG. Treatment of Parkinson’s disease. J Clin Neurosci. 2000;7(6):484-494. doi: 10.1054/jocn.2000.0766

 

  1. Kwon HJ, Kim D, Seo K, et al. Ceria nanoparticle systems for selective scavenging of mitochondrial, intracellular, and extracellular reactive oxygen species in Parkinson’s disease. Angew Chem Int Ed Engl. 2018;57(30):9408-9412. doi: 10.1002/anie.201805052

 

  1. Hao C, Qu A, Xu L, et al. Chiral molecule-mediated porous Cu (x)O nanoparticle clusters with antioxidation activity for ameliorating Parkinson’s disease. J Am Chem Soc. 2019;141(2):1091-1099. doi: 10.1021/jacs.8b11856

 

  1. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18(4):225-242. doi: 10.1038/nri.2017.125

 

  1. Liu H, Han Y, Wang T, et al. Targeting microglia for therapy of Parkinson’s disease by using biomimetic ultrasmall nanoparticles. J Am Chem Soc. 2020;142(52):21730-21742. doi: 10.1021/jacs.0c09390

 

  1. Feng W, Han X, Hu H, et al. 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases. Nat Commun. 2021;12(1):2203. doi: 10.1038/s41467-021-22278-x

 

  1. Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013-1022. doi: 10.1038/s41556-018-0176-2

 

  1. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9-14. doi: 10.1038/nrm3028

 

  1. Li B, Bai Y, Yion C, et al. Single-atom nanocatalytic therapy for suppression of neuroinflammation by inducing autophagy of abnormal mitochondria. ACS Nano. 2023;17(8):7511-7529. doi: 10.1021/acsnano.2c12614

 

  1. Campbell BCV, De Silva DA, Macleod MR, et al. Ischaemic stroke. Nat Rev Dis Primers. 2019;5(1):70. doi: 10.1038/s41572-019-0118-8

 

  1. Medcalf RL, Davis SM. Plasminogen activation and thrombolysis for ischemic stroke. Int J Stroke. 2012;7(5):419-425. doi: 10.1111/j.1747-4949.2012.00783.x

 

  1. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke. 2009;4(6):461-470. doi: 10.1111/j.1747-4949.2009.00387.x

 

  1. Matsumoto S, Murozono M, Kanazawa M, Nara T, Ozawa T, Watanabe Y. Edaravone and cyclosporine A as neuroprotective agents for acute ischemic stroke. Acute Med Surg. 2018;5(3):213-221. doi: 10.1002/ams2.343

 

  1. Lapchak PA. A critical assessment of edaravone acute ischemic stroke efficacy trials: Is edaravone an effective neuroprotective therapy? Expert Opin Pharmacother. 2010;11(10):1753-1763. doi: 10.1517/14656566.2010.493558

 

  1. He W, Mei Q, Li J, et al. Preferential targeting cerebral ischemic lesions with cancer cell-inspired nanovehicle for ischemic stroke treatment. Nano Lett. 2021;21(7):3033-3043. doi: 10.1021/acs.nanolett.1c00231

 

  1. Wang C, Wu B, Wu Y, Song X, Zhang S, Liu Z. Camouflaging nanoparticles with brain metastatic tumor cell membranes: A new strategy to traverse blood-brain barrier for imaging and therapy of brain tumors. Adv Funct Mater. 2020;30(14):1909369. doi: 10.1002/adfm.201909369

 

  1. Liu Y, Ai K, Ji X, et al. Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J Am Chem Soc. 2017;139(2):856-862. doi: 10.1021/jacs.6b11013

 

  1. Kim CK, Kim T, Choi IY, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl. 2012;51(44):11039-11043. doi: 10.1002/anie.201203780

 

  1. Bao Q, Hu P, Xu Y, et al. Simultaneous blood-brain barrier crossing and protection for stroke treatment based on edaravone-loaded ceria nanoparticles. ACS Nano. 2018;12(7):6794-6805. doi: 10.1021/acsnano.8b01994

 

  1. He L, Huang G, Liu H, Sang C, Liu X, Chen T. Highly bioactive zeolitic imidazolate framework- 8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke. Sci Adv. 2020;6(12):eaay9751. doi: 10.1126/sciadv.aay9751

 

  1. Li S, Jiang D, Ehlerding EB, et al. Intrathecal administration of nanoclusters for protecting neurons against oxidative stress in cerebral ischemia/reperfusion injury. ACS Nano. 2019;13(11):13382-13389. doi: 10.1021/acsnano.9b06780

 

  1. Wang Z, Zhao Y, Hou Y, et al. A thrombin-activated peptide-templated nanozyme for remedying ischemic stroke via thrombolytic and neuroprotective actions. Adv Mater. 2023:e2210144. doi: 10.1002/adma.202210144

 

  1. Maas AIR, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728-741. doi: 10.1016/S1474-4422(08)70164-9

 

  1. Rodriguez-Rodriguez A, Egea-Guerrero JJ, Murillo- Cabezas F, Carrillo-Vico A. Oxidative stress in traumatic brain injury. Curr Med Chem. 2014;21(10):1201-1211. doi: 10.2174/0929867321666131217153310

 

  1. Greve MW, Zink BJ. Pathophysiology of traumatic brain injury. Mt Sinai J Med. 2009;76(2):97-104. doi: 10.1002/msj.20104

 

  1. Boyd BJ, Galle A, Daglas M, Rosenfeld JV, Medcalf R. Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. J Drug Target. 2015;23(9):847-853. doi: 10.3109/1061186X.2015.1034280

 

  1. Yoo D, Magsam AW, Kelly AM, Stayton PS, Kievit FM, Convertine AJ. Core-cross-linked nanoparticles reduce neuroinflammation and improve outcome in a mouse model of traumatic brain injury. ACS Nano. 2017;11(9):8600-8611. doi: 10.1021/acsnano.7b03426

 

  1. Bitner BR, Marcano DC, Berlin JM, et al. Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano. 2012;6(9):8007-8014. doi: 10.1021/nn302615f

 

  1. Ali SS, Hardt JI, Quick KL, et al. A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Biol Med. 2004;37(8):1191-1202. doi: 10.1016/j.freeradbiomed.2004.07.002

 

  1. Mu X, Wang J, Li Y, et al. Redox trimetallic nanozyme with neutral environment preference for brain injury. ACS Nano. 2019;13(2):1870-1884. doi: 10.1021/acsnano.8b08045

 

  1. Mu X, Wang J, He H, et al. An oligomeric semiconducting nanozyme with ultrafast electron transfers alleviates acute brain injury. Sci Adv. 2021;7(46):eabk1210. doi: 10.1126/sciadv.abk1210

 

  1. Chang B, Zhang L, Wu S, Sun Z, Cheng Z. Engineering single-atom catalysts toward biomedical applications. Chem Soc Rev. 2022;51(9):3688-3734. doi: 10.1039/d1cs00421b

 

  1. Liu H, Li Y, Sun S, et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat Commun. 2021;12(1):114. doi: 10.1038/s41467-020-20275-0

 

  1. Zhang S, Li Y, Sun S, et al. Single-atom nanozymes catalytically surpassing naturally occurring enzymes as sustained stitching for brain trauma. Nat Commun. 2022;13(1):4744. doi: 10.1038/s41467-022-32411-z

 

  1. Huang B, Tang T, Chen SH, et al. Near-infrared-IIb emitting single-atom catalyst for imaging-guided therapy of blood-brain barrier breakdown after traumatic brain injury. Nat Commun. 2023;14(1):197. doi: 10.1038/s41467-023-35868-8

 

  1. Honda T, Hirakawa Y, Nangaku M. The role of oxidative stress and hypoxia in renal disease. Kidney Res Clin Pract. 2019;38(4):414-426. doi: 10.23876/j.krcp.19.063

 

  1. Kamaly N, He JC, Ausiello DA, Farokhzad OC. Nanomedicines for renal disease: Current status and future applications. Nat Rev Nephrol. 2016;12(12):738-753. doi: 10.1038/nrneph.2016.156

 

  1. Du BJ, Yu MX, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater. 2018;3(10):358-374. doi: 10.1038/s41578-018-0038-3

 

  1. Bellomo R, Kellum JA, Ronco C. Acute kidney injury. Lancet. 2012;380(9843):756-766. doi: 10.1016/S0140-6736(11)61454-2

 

  1. Thadhani R, Pascual M, Bonventre JV. Acute renal failure. N Engl J Med. 1996;334(22):1448-1460. doi: 10.1056/NEJM199605303342207

 

  1. Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984;74(4):1156-1164. doi: 10.1172/JCI111524

 

  1. Star RA. Treatment of acute renal failure. Kidney Int. 1998;54(6):1817-1831. doi: 10.1046/j.1523-1755.1998.00210.x

 

  1. Rushworth GF, Megson IL. Existing and potential therapeutic uses for N-acetylcysteine: The need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141(2):150-159. doi: 10.1016/j.pharmthera.2013.09.006

 

  1. Jiang D, Ge Z, Im HJ, et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng. 2018;2(11):865-877. doi: 10.1038/s41551-018-0317-8

 

  1. Hou J, Wang H, Ge Z, et al. Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett. 2020;20(2):1447-1454. doi: 10.1021/acs.nanolett.9b05218

 

  1. Chen Z, Qi F, Qiu W, et al. Hydrogenated germanene nanosheets as an antioxidative defense agent for acute kidney injury treatment. Adv Sci (Weinh). 2022;9(33):e2202933. doi: 10.1002/advs.202202933

 

  1. Weng Q, Sun H, Fang C, et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat Commun. 2021;12(1):1436. doi: 10.1038/s41467-021-21714-2

 

  1. Meng L, Feng J, Gao J, et al. Reactive oxygen species- and cell-free DNA-scavenging Mn(3)O(4) nanozymes for acute kidney injury therapy. ACS Appl Mater Interfaces. 2022;14(45):50649-50663. doi: 10.1021/acsami.2c16305

 

  1. Ni D, Jiang D, Kutyreff CJ, et al. Molybdenum-based nanoclusters act as antioxidants and ameliorate acute kidney injury in mice. Nat Commun. 2018;9(1):5421. doi: 10.1038/s41467-018-07890-8

 

  1. Choi HS, Mathew AP, Uthaman S, et al. Inflammation-sensing catalase-mimicking nanozymes alleviate acute kidney injury via reversing local oxidative stress. J Nanobiotechnol. 2022;20(1):205. doi: 10.1186/s12951-022-01410-z

 

  1. Yang WS, Stockwell BR. Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165-176. doi: 10.1016/j.tcb.2015.10.014

 

  1. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273-285. doi: 10.1016/j.cell.2017.09.021

 

  1. Jiang X, Stockwell BR, Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266-282. doi: 10.1038/s41580-020-00324-8

 

  1. Dixon SJ, Stockwell BR. The role of iron and reactive oxygen species in cell death. Nat Chem Biol. 2014;10(1):9-17. doi: 10.1038/nchembio.1416

 

  1. Ni L, Yuan C, Wu X. Targeting ferroptosis in acute kidney injury. Cell Death Dis. 2022;13(2):182. doi: 10.1038/s41419-022-04628-9

 

  1. Hosohata K, Harnsirikarn T, Chokesuwattanaskul S. Ferroptosis: A potential therapeutic target in acute kidney injury. Int J Mol Sci. 2022;23(12):6583. doi: 10.3390/ijms23126583

 

  1. Wang K, Zhang Y, Mao W, et al. Engineering ultrasmall ferroptosis‐targeting and reactive oxygen/nitrogen species‐scavenging nanozyme for alleviating acute kidney injury. Adv Funct Mater. 2021;32(10):2109221. doi: 10.1002/adfm.202109221

 

  1. Eckardt KU, Coresh J, Devuyst O, et al. Evolving importance of kidney disease: from subspecialty to global health burden. Lancet. 2013;382(9887):158-169. doi: 10.1016/S0140-6736(13)60439-0

 

  1. Kovesdy CP. Epidemiology of chronic kidney disease: An update 2022. Kidney Int Suppl (2011). 2022;12(1):7-11. doi: 10.1016/j.kisu.2021.11.003

 

  1. Galvan DL, Green NH, Danesh FR. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017;92(5):1051-1057. doi: 10.1016/j.kint.2017.05.034

 

  1. Ho HJ, Shirakawa H. Oxidative stress and mitochondrial dysfunction in chronic kidney disease. Cells. 2023;12(1):88. doi: 10.3390/cells12010088

 

  1. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019;34(6):975-991. doi: 10.1007/s00467-018-4005-4

 

  1. Small DM, Coombes JS, Bennett N, Johnson DW, Gobe GC. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton). 2012;17(4):311-321. doi: 10.1111/j.1440-1797.2012.01572.x

 

  1. Adhikari A, Mondal S, Chatterjee T, et al. Redox nanomedicine ameliorates chronic kidney disease (CKD) by mitochondrial reconditioning in mice. Commun Biol. 2021;4(1):1013. doi: 10.1038/s42003-021-02546-8

 

  1. Kolff WJ. Hemodialysis in the management of renal disease. Annu Rev Med. 1972;23(1):321-332. doi: 10.1146/annurev.me.23.020172.001541

 

  1. Liakopoulos V, Roumeliotis S, Zarogiannis S, Eleftheriadis T, Mertens PR. Oxidative stress in hemodialysis: Causative mechanisms, clinical implications, and possible therapeutic interventions. Semin Dial. 2019;32(1):58-71. doi: 10.1111/sdi.12745

 

  1. Wei Z, Peng G, Zhao Y, et al. Engineering antioxidative cascade metal-phenolic nanozymes for alleviating oxidative stress during extracorporeal blood purification. ACS Nano. 2022;16(11):18329-18343. doi: 10.1021/acsnano.2c06186

 

  1. Park HS, Kim SR, Lee YC. Impact of oxidative stress on lung diseases. Respirology. 2009;14(1):27-38.doi: 10.1111/j.1440-1843.2008.01447.x

 

  1. Holguin F. Oxidative stress in airway diseases. Ann Am Thorac Soc. 2013;10 Suppl: S150-S157. doi: 10.1513/AnnalsATS.201305-116AW

 

  1. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet. 2011;377(9773):1264-1275. doi: 10.1016/S0140-6736(10)61459-6

 

  1. Iuliano AD, Roguski KM, Chang HH, et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet. 2018;391(10127):1285-1300. doi: 10.1016/S0140-6736(17)33293-2

 

  1. Hood ED, Chorny M, Greineder CF, Alferiev IS, Levy RJ, Muzykantov VR. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials. 2014;35(11):3708-3715. doi: 10.1016/j.biomaterials.2014.01.023

 

  1. Huang Y, Liu Z, Liu C, Zhang Y, Ren J, Qu X. Selenium-based nanozyme as biomimetic antioxidant machinery. Chemistry. 2018;24(40):10224-10230. doi: 10.1002/chem.201801725

 

  1. Li J, Zhou ZA, Liu XM, et al. Material-herbology: An effective and safe strategy to eradicate lethal viral-bacterial pneumonia. Matter. 2021;4(9):3030-3048. doi: 10.1016/j.matt.2021.07.001

 

  1. Liu P, Ji P, Wang L, Guo H, Huo M, Shi J. Concurrent antibiosis and anti-inflammation against bacterial pneumonia by zinc hexacyanoferrate nanocatalysts. Biomaterials. 2022;289:121768. doi: 10.1016/j.biomaterials.2022.121768

 

  1. Martinez FJ, Collard HR, Pardo A, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017;3(1):17074. doi: 10.1038/nrdp.2017.74

 

  1. Cheresh P, Kim SJ, Tulasiram S, Kamp DW. Oxidative stress and pulmonary fibrosis. Biochim Biophys Acta. 2013;1832(7):1028-1040. doi: 10.1016/j.bbadis.2012.11.021

 

  1. Ward PA, Hunninghake GW. Lung inflammation and fibrosis. Am J Respir Crit Care Med. 1998;157(4 Pt 2):S123-S129. doi: 10.1164/ajrccm.157.4.nhlbi-10

 

  1. Kliment CR, Oury TD. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic Biol Med. 2010;49(5):707-717. doi: 10.1016/j.freeradbiomed.2010.04.036

 

  1. Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): Two randomised trials. Lancet. 2011;377(9779):1760-1769. doi: 10.1016/S0140-6736(11)60405-4

 

  1. Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353(21):2229-2242. doi: 10.1056/NEJMoa042976

 

  1. Nagao S, Taguchi K, Sakai H, et al. Carbon monoxide-bound hemoglobin-vesicles for the treatment of bleomycin-induced pulmonary fibrosis. Biomaterials. 2014;35(24):6553-6562. doi: 10.1016/j.biomaterials.2014.04.049

 

  1. Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235(4792):1043-1046. doi: 10.1126/science.3029864

 

  1. Keum H, Kim D, Kim J, et al. A bilirubin-derived nanomedicine attenuates the pathological cascade of pulmonary fibrosis. Biomaterials. 2021;275:120986. doi: 10.1016/j.biomaterials.2021.120986

 

  1. Albano GD, Gagliardo RP, Montalbano AM, Profita M. Overview of the mechanisms of oxidative stress: Impact in inflammation of the airway diseases. Antioxidants (Basel). 2022;11(11):2237. doi: 10.3390/antiox11112237

 

  1. Kluchova Z, Tkacova R. The role of oxidative stress in lung injury induced by cigarette smoke. Biologia. 2006;61(6):643-650. doi: 10.2478/s11756-006-0135-4

 

  1. Busse WW, Lemanske RF Jr. Asthma. N Engl J Med. 2001;344(5):350-362. doi: 10.1056/NEJM200102013440507

 

  1. Alangari AA. Corticosteroids in the treatment of acute asthma. Ann Thorac Med. 2014;9(4):187-192. doi: 10.4103/1817-1737.140120

 

  1. Kim DE, Lee Y, Kim M, Lee S, Jon S, Lee SH. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials. 2017;140:37-44. doi: 10.1016/j.biomaterials.2017.06.014

 

  1. Tsoi KM, MacParland SA, Ma XZ, et al. Mechanism of hard-nanomaterial clearance by the liver. Nat Mater. 2016;15(11):1212-1221. doi: 10.1038/nmat4718

 

  1. Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today. 2015;10(4):487-510. doi: 10.1016/j.nantod.2015.06.006

 

  1. Bourquin J, Milosevic A, Hauser D, et al. Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Adv Mater. 2018;30(19):e1704307. doi: 10.1002/adma.201704307

 

  1. Williams R. Global challenges in liver disease. Hepatology. 2006;44(3):521-526. doi: 10.1002/hep.21347

 

  1. Montalvo-Jave EE, Pina E, Montalvo-Arenas C, et al. Role of ischemic preconditioning in liver surgery and hepatic transplantation. J Gastrointest Surg. 2009;13(11):2074-2083. doi: 10.1007/s11605-009-0878-7

 

  1. Jaeschke H. Reactive oxygen and ischemia/reperfusion injury of the liver. Chem Biol Interact. 1991;79(2):115-136. doi: 10.1016/0009-2797(91)90077-k

 

  1. Fondevila C, Busuttil RW, Kupiec-Weglinski JW. Hepatic ischemia/reperfusion injury--a fresh look. Exp Mol Pathol. 2003;74(2):86-93. doi: 10.1016/s0014-4800(03)00008-x

 

  1. Wang H, Xi Z, Deng L, Pan Y, He K, Xia Q. Macrophage polarization and liver ischemia-reperfusion injury. Int J Med Sci. 2021;18(5):1104-1113. doi: 10.7150/ijms.52691

 

  1. Kim JY, Lee DY, Kang S, et al. Bilirubin nanoparticle preconditioning protects against hepatic ischemia-reperfusion injury. Biomaterials. 2017;133:1-10. doi: 10.1016/j.biomaterials.2017.04.011

 

  1. Jung E, Song N, Lee Y, Kwon G, Kwon S, Lee D. H(2) O(2)-activatable hybrid prodrug nanoassemblies as a pure nanodrug for hepatic ischemia/reperfusion injury. Biomaterials. 2022;284:121515. doi: 10.1016/j.biomaterials.2022.121515

 

  1. Manne N, Arvapalli R, Graffeo VA, et al. Prophylactic treatment with cerium oxide nanoparticles attenuate hepatic ischemia reperfusion injury in Sprague Dawley rats. Cell Physiol Biochem. 2017;42(5):1837-1846. doi: 10.1159/000479540

 

  1. Ni D, Wei H, Chen W, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: The perfect imperfection. Adv Mater. 2019;31(40):e1902956. doi: 10.1002/adma.201902956

 

  1. Hoofnagle JH, di Bisceglie AM. The treatment of chronic viral hepatitis. N Engl J Med. 1997;336(5):347-356. doi: 10.1056/NEJM199701303360507

 

  1. Gao B, Bataller R. Alcoholic liver disease: Pathogenesis and new therapeutic targets. Gastroenterology. 2011;141(5):1572-1585. doi: 10.1053/j.gastro.2011.09.002

 

  1. Desmet VJ, Gerber M, Hoofnagle JH, Manns M, Scheuer PJ. Classification of chronic hepatitis: Diagnosis, grading and staging. Hepatology. 1994;19(6):1513-1520. doi: 10.1002/hep.1840190629

 

  1. Al Mamun A, Wu Y, Jia C, et al. Role of pyroptosis in liver diseases. Int Immunopharmacol. 2020;84:106489. doi: 10.1016/j.intimp.2020.106489

 

  1. Hurtado-Navarro L, Angosto-Bazarra D, Pelegrin P, Baroja- Mazo A, Cuevas S. NLRP3 inflammasome and pyroptosis in liver pathophysiology: The emerging relevance of Nrf2 inducers. Antioxidants (Basel). 2022;11(5):870. doi: 10.3390/antiox11050870

 

  1. Devant P, Borsic E, Ngwa EM, et al. Gasdermin D pore-forming activity is redox-sensitive. Cell Rep. 2023;42(1):112008. doi: 10.1016/j.celrep.2023.112008

 

  1. Zhang J, Gao B, Ye B, et al. Mitochondrial-targeted delivery of polyphenol-mediated antioxidases complexes against pyroptosis and inflammatory diseases. Adv Mater. 2023;35(11):e2208571. doi: 10.1002/adma.202208571

 

  1. Gines P, Krag A, Abraldes JG, Sola E, Fabrellas N, Kamath PS. Liver cirrhosis. Lancet. 2021;398(10308):1359-1376. doi: 10.1016/S0140-6736(21)01374-X

 

  1. Torok NJ. Dysregulation of redox pathways in liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 2016;311(4):G667-G674. doi: 10.1152/ajpgi.00050.2016

 

  1. Wang S, Friedman SL. Hepatic fibrosis: A convergent response to liver injury that is reversible. J Hepatol. 2020;73(1):210-211. doi: 10.1016/j.jhep.2020.03.011

 

  1. Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol. 2014;20(23):7312-7324. doi: 10.3748/wjg.v20.i23.7312

 

  1. Zhang DQ, Sun P, Jin Q, et al. Resveratrol regulates activated hepatic stellate cells by modulating NF-kappaB and the PI3K/Akt signaling pathway. J Food Sci. 2016;81(1):H240-H245. doi: 10.1111/1750-3841.13157

 

  1. Singh AP, Singh R, Verma SS, et al. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev. 2019;39(5):1851-1891. doi: 10.1002/med.21565

 

  1. Wang Y, Liu Y, Liu Y, et al. Remodeling liver microenvironment by L-arginine loaded hollow polydopamine nanoparticles for liver cirrhosis treatment. Biomaterials. 2023;295:122028. doi: 10.1016/j.biomaterials.2023.122028

 

  1. Tarantino G, Saldalamacchia G, Conca P, Arena A. Non-alcoholic fatty liver disease: Further expression of the metabolic syndrome. J Gastroenterol Hepatol. 2007;22(3):293-303. doi: 10.1111/j.1440-1746.2007.04824.x

 

  1. Williams DL. Oxidative stress and the eye. Vet Clin North Am Small Anim Pract. 2008;38(1):179-192, vii. doi: 10.1016/j.cvsm.2007.10.006

 

  1. Subramaniam MD, Iyer M, Nair AP, et al. Oxidative stress and mitochondrial transfer: A new dimension towards ocular diseases. Genes Dis. 2022;9(3):610-637. doi: 10.1016/j.gendis.2020.11.020

 

  1. Hsueh YJ, Chen YN, Tsao YT, Cheng CM, Wu WC, Chen HC. The pathomechanism, antioxidant biomarkers, and treatment of oxidative stress-related eye diseases. Int J Mol Sci. 2022;23(3):1255. doi: 10.3390/ijms23031255

 

  1. Tang Z, Fan X, Chen Y, Gu P. Ocular nanomedicine. Adv Sci (Weinh). 2022;9(15):e2003699. doi: 10.1002/advs.202003699

 

  1. Cunha-Vaz JG. The blood-ocular barriers: Past, present, and future. Doc Ophthalmol. 1997;93(1-2):149-157. doi: 10.1007/BF02569055

 

  1. Freddo TF. Shifting the paradigm of the blood-aqueous barrier. Exp Eye Res. 2001;73(5):581-592. doi: 10.1006/exer.2001.1056

 

  1. Runkle EA, Antonetti DA. The blood-retinal barrier: Structure and functional significance. In: Nag S, editor. The Blood-Brain and Other Neural Barriers: Reviews and Protocols. United States: Humana Press; 2011. p. 133-148.

 

  1. Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009;29(7):875-912. doi: 10.1097/IAE.0b013e3181a94f01

 

  1. Bochot A, Fattal E. Liposomes for intravitreal drug delivery: A state of the art. J Control Release. 2012;161(2):628-634. doi: 10.1016/j.jconrel.2012.01.019

 

  1. Falavarjani KG, Nguyen QD. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: A review of literature. Eye (Lond). 2013;27(7):787-794. doi: 10.1038/eye.2013.107

 

  1. Wang C, Pang Y. Nano-based eye drop: Topical and noninvasive therapy for ocular diseases. Adv Drug Deliv Rev. 2023;194:114721. doi: 10.1016/j.addr.2023.114721

 

  1. Weng Y, Liu J, Jin S, Guo W, Liang X, Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm Sin B. 2017;7(3):281-291. doi: 10.1016/j.apsb.2016.09.001

 

  1. Mun EA, Morrison PW, Williams AC, Khutoryanskiy VV. On the barrier properties of the cornea: A microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol Pharm. 2014;11(10):3556-3564. doi: 10.1021/mp500332m

 

  1. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96(5):614-618. doi: 10.1136/bjophthalmol-2011-300539

 

  1. Lim LS, Mitchell P, Seddon JM, Holz FG, Wong TY. Age-related macular degeneration. Lancet. 2012;379(9827):1728-1738. doi: 10.1016/S0140-6736(12)60282-7

 

  1. Bowes Rickman C, Farsiu S, Toth CA, Klingeborn M. Dry age-related macular degeneration: Mechanisms, therapeutic targets, and imaging. Invest Ophthalmol Vis Sci. 2013;54(14):ORSF68-ORSF80. doi: 10.1167/iovs.13-12757

 

  1. Chappelow AV, Kaiser PK. Neovascular age-related macular degeneration: Potential therapies. Drugs. 2008;68(8):1029-1036. doi: 10.2165/00003495-200868080-00002

 

  1. Klein R, Peto T, Bird A, Vannewkirk MR. The epidemiology of age-related macular degeneration. Am J Ophthalmol. 2004;137(3):486-495. doi: 10.1016/j.ajo.2003.11.069

 

  1. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106-e116. doi: 10.1016/S2214-109X(13)70145-1

 

  1. Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45(2):115-134. doi: 10.1016/s0039-6257(00)00140-5

 

  1. Wang P, Chin EK, Almeida D. Antioxidants for the treatment of retinal disease: Summary of recent evidence. Clin Ophthalmol. 2021;15:1621-1628. doi: 10.2147/OPTH.S307009

 

  1. Luo LJ, Jian HJ, Harroun SG, Lai JY, Unnikrishnan B, Huang CC. Targeting nanocomposites with anti-oxidative/ inflammatory/angiogenic activities for synergistically alleviating macular degeneration. Appl Mater Today. 2021;24:101156. doi: 10.1016/j.apmt.2021.101156

 

  1. Nguyen DD, Luo LJ, Yang CJ, Lai JY. Highly retina-permeating and long-acting resveratrol/metformin nanotherapeutics for enhanced treatment of macular degeneration. ACS Nano. 2023;17(1):168-183. doi: 10.1021/acsnano.2c05824

 

  1. Chen J, Patil S, Seal S, McGinnis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 2006;1(2):142-150. doi: 10.1038/nnano.2006.91

 

  1. Mitra RN, Gao R, Zheng M, et al. Glycol chitosan engineered autoregenerative antioxidant significantly attenuates pathological damages in models of age-related macular degeneration. ACS Nano. 2017;11(5):4669-4685. doi: 10.1021/acsnano.7b00429

 

  1. Badia A, Duarri A, Salas A, et al. Repeated topical administration of 3 nm cerium oxide nanoparticles reverts disease atrophic phenotype and arrests neovascular degeneration in AMD mouse models. ACS Nano. 2023;17(2):910-926. doi: 10.1021/acsnano.2c05447

 

  1. Sarna T. Properties and function of the ocular melanin--a photobiophysical view. J Photochem Photobiol B. 1992;12(3):215-258. doi: 10.1016/1011-1344(92)85027-r

 

  1. Sarna T, Burke JM, Korytowski W, et al. Loss of melanin from human RPE with aging: possible role of melanin photooxidation. Exp Eye Res. 2003;76(1):89-98. doi: 10.1016/s0014-4835(02)00247-6

 

  1. Kwon YS, Zheng M, Zhang AY, Han Z. Melanin-like nanoparticles as an alternative to natural melanin in retinal pigment epithelium cells and their therapeutic effects against age-related macular degeneration. ACS Nano. 2022;16(11):19412-19422. doi: 10.1021/acsnano.2c09087

 

  1. Truong A, Wong TY, Khachigian LM. Emerging therapeutic approaches in the management of retinal angiogenesis and edema. J Mol Med (Berl). 2011;89(4):343-361. doi: 10.1007/s00109-010-0709-z

 

  1. Hartnett ME, Penn JS. Mechanisms and management of retinopathy of prematurity. N Engl J Med. 2012;367(26):2515-2526. doi: 10.1056/NEJMra1208129

 

  1. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124-136. doi: 10.1016/S0140-6736(09)62124-3

 

  1. Campochiaro PA. Ocular neovascularization. J Mol Med (Berl). 2013;91(3):311-321. doi: 10.1007/s00109-013-0993-5

 

  1. Caprara C, Grimm C. From oxygen to erythropoietin: Relevance of hypoxia for retinal development, health and disease. Prog Retin Eye Res. 2012;31(1):89-119. doi: 10.1016/j.preteyeres.2011.11.003

 

  1. Blasiak J, Petrovski G, Vereb Z, Facsko A, Kaarniranta K. Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed Res Int. 2014;2014:768026. doi: 10.1155/2014/768026

 

  1. Campochiaro PA. Targeted pharmacotherapy of retinal diseases with ranibizumab. Drugs Today (Barc). 2007;43(8):529-537. doi: 10.1358/dot.2007.43.8.1120868

 

  1. Stewart MW. Aflibercept (VEGF-TRAP): The next anti-VEGF drug. Inflamm Allergy Drug Targets. 2011;10(6):497-508. doi: 10.2174/187152811798104872

 

  1. Krohne TU, Eter N, Holz FG, Meyer CH. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146(4):508-512. doi: 10.1016/j.ajo.2008.05.036

 

  1. Xue B, Ge M, Fan K, et al. Mitochondria-targeted nanozymes eliminate oxidative damage in retinal neovascularization disease. J Control Release. 2022;350:271-283. doi: 10.1016/j.jconrel.2022.08.026

 

  1. Zhang R, Xue B, Tao Y, et al. Edge-site engineering of defective Fe-N(4) nanozymes with boosted catalase-like performance for retinal vasculopathies. Adv Mater. 2022;34(39):e2205324. doi: 10.1002/adma.202205324

 

  1. Zhang R, Chen L, Liang Q, et al. Unveiling the active sites on ferrihydrite with apparent catalase-like activity for potentiating radiotherapy. Nano Today. 2021;41:101317. doi: 10.1016/j.nantod.2021.101317

 

  1. Quigley HA. Glaucoma. Lancet. 2011;377(9774):1367-1377. doi: 10.1016/S0140-6736(10)61423-7

 

  1. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: A review. JAMA. 2014;311(18):1901-1911. doi: 10.1001/jama.2014.3192

 

  1. Goyal A, Srivastava A, Sihota R, Kaur J. Evaluation of oxidative stress markers in aqueous humor of primary open angle glaucoma and primary angle closure glaucoma patients. Curr Eye Res. 2014;39(8):823-829. doi: 10.3109/02713683.2011.556299

 

  1. Inman DM, Lambert WS, Calkins DJ, Horner PJ. α- lipoic acid antioxidant treatment limits glaucoma-related retinal ganglion cell death and dysfunction. PLoS One. 2013;8(6):e65389. doi: 10.1371/journal.pone.0065389

 

  1. Luo LJ, Nguyen DD, Lai JY. Dually functional hollow ceria nanoparticle platform for intraocular drug delivery: A push beyond the limits of static and dynamic ocular barriers toward glaucoma therapy. Biomaterials. 2020;243:119961. doi: 10.1016/j.biomaterials.2020.119961

 

  1. Del Amo EM, Rimpela AK, Heikkinen E, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134-185. doi: 10.1016/j.preteyeres.2016.12.001

 

  1. Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010;28(1):573-621. doi: 10.1146/annurev-immunol-030409-101225

 

  1. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347(6):417-429. doi: 10.1056/NEJMra020831

 

  1. Hoivik ML, Moum B, Solberg IC, et al. Health-related quality of life in patients with ulcerative colitis after a 10-year disease course: Results from the IBSEN study. Inflamm Bowel Dis. 2012;18(8):1540-1549. doi: 10.1002/ibd.21863

 

  1. Simmonds NJ, Rampton DS. Inflammatory bowel disease--a radical view. Gut. 1993;34(7):865-868. doi: 10.1136/gut.34.7.865

 

  1. Hu Y, Chen D, Zheng P, et al. The bidirectional interactions between resveratrol and gut microbiota: An insight into oxidative stress and inflammatory bowel disease therapy. Biomed Res Int. 2019;2019:5403761. doi: 10.1155/2019/5403761

 

  1. Williet N, Paul S, Peyrin-Biroulet L, Roblin X. Pharmacokinetics of infliximab and reduction of treatment for inflammatory bowel diseases. Dig Dis Sci. 2016;61(4):990-995. doi: 10.1007/s10620-015-3984-2

 

  1. Paul S, Moreau AC, Del Tedesco E, et al. Pharmacokinetics of adalimumab in inflammatory bowel diseases: A systematic review and meta-analysis. Inflamm Bowel Dis. 2014;20(7):1288-1295. doi: 10.1097/MIB.0000000000000037

 

  1. Vargas Robles H, Citalan Madrid AF, Garcia Ponce A, et al. Experimental colitis is attenuated by cardioprotective diet supplementation that reduces oxidative stress, inflammation, and mucosal damage. Oxid Med Cell Longev. 2016;2016:8473242. doi: 10.1155/2016/8473242

 

  1. Zhang Y, Wang T, Sun M, et al. Advanced nanomedicine: Redefining therapeutic paradigms for inflammatory bowel disease. Adv Healthc Mater. 2023;12:e2300069. doi: 10.1002/adhm.202300069

 

  1. Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev. 2021;179:114021. doi: 10.1016/j.addr.2021.114021

 

  1. Tirosh B, Khatib N, Barenholz Y, Nissan A, Rubinstein A. Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol Pharm. 2009;6(4):1083-1091. doi: 10.1021/mp9000926

 

  1. Xu J, Chu T, Yu T, et al. Design of diselenide-bridged hyaluronic acid nano-antioxidant for efficient ROS scavenging to relieve colitis. ACS Nano. 2022;16(8):13037-13048. doi: 10.1021/acsnano.2c05558

 

  1. Zhang C, Wang H, Yang X, et al. Oral zero-valent-molybdenum nanodots for inflammatory bowel disease therapy. Sci Adv. 2022;8(37):eabp9882. doi: 10.1126/sciadv.abp9882

 

  1. Huang Q, Yang Y, Zhu Y, et al. Oral metal-free melanin nanozymes for natural and durable targeted treatment of inflammatory bowel disease (IBD). Small. 2023;19:e2207350. doi: 10.1002/smll.202207350

 

  1. Sun W, Chen Y, Wang L, et al. Gram-scale preparation of quercetin supramolecular nanoribbons for intestinal inflammatory diseases by oral administration. Biomaterials. 2023;295:122039. doi: 10.1016/j.biomaterials.2023.122039

 

  1. Zhao S, Li YX, Liu QY, et al. An orally administered CeO2@montmorillonite nanozyme targets inflammation for inflammatory bowel disease therapy. Adv Funct Mater. 2020;30(45):2004692. doi: 10.1002/adfm.202004692

 

  1. Liu Y, Cheng Y, Zhang H, et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv. 2020;6(29):eabb2695. doi: 10.1126/sciadv.abb2695

 

  1. Liu J, Shi L, Wang Y, et al. Ruthenium-based metal-organic framework with reactive oxygen and nitrogen species scavenging activities for alleviating inflammation diseases. Nano Today. 2022;47:101627. doi: 10.1016/j.nantod.2022.101627

 

  1. Wang Q, Cheng C, Zhao S, et al. A valence-engineered self-cascading antioxidant nanozyme for the therapy of inflammatory bowel disease. Angew Chem Int Ed Engl. 2022;61(27):e202201101. doi: 10.1002/anie.202201101

 

  1. Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol. 2017;15(10):630-638. doi: 10.1038/nrmicro.2017.58

 

  1. Zhong D, Zhang D, Chen W, et al. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci Adv. 2021;7(48):eabi9265. doi: 10.1126/sciadv.abi9265

 

  1. Liu J, Wang Y, Heelan WJ, Chen Y, Li Z, Hu Q. Mucoadhesive probiotic backpacks with ROS nanoscavengers enhance the bacteriotherapy for inflammatory bowel diseases. Sci Adv. 2022;8(45):eabp8798. doi: 10.1126/sciadv.abp8798

 

  1. Zhu YX, You Y, Chen Z, et al. Inorganic nanosheet-shielded probiotics: A self-adaptable oral delivery system for intestinal disease treatment. Nano Lett. 2023;23:4683-4692. doi: 10.1021/acs.nanolett.3c00118

 

  1. Cao F, Jin L, Gao Y, et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat Nanotechnol. 2023;18:617-627. doi: 10.1038/s41565-023-01346-x

 

  1. Rawlings AV. Recent advances in skin “barrier” research. J Pharm Pharmacol. 2010;62(6):671-677. doi: 10.1211/jpp.62.06.0002

 

  1. Roberts MS, Cheruvu HS, Mangion SE, et al. Topical drug delivery: History, percutaneous absorption, and product development. Adv Drug Deliv Rev. 2021;177:113929. doi: 10.1016/j.addr.2021.113929

 

  1. Tiwari N, Osorio-Blanco ER, Sonzogni A, Esporrin- Ubieto D, Wang H, Calderon M. Nanocarriers for skin applications: Where do we stand? Angew Chem Int Ed Engl. 2022;61(3):e202107960. doi: 10.1002/anie.202107960

 

  1. Schneider M, Stracke F, Hansen S, Schaefer UF. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol. 2009;1(4):197-206. doi: 10.4161/derm.1.4.9501

 

  1. Cui M, Wiraja C, Chew SWT, Xu C. Nanodelivery systems for topical management of skin disorders. Mol Pharm. 2021;18(2):491-505. doi: 10.1021/acs.molpharmaceut.0c00154

 

  1. Nestle FO, Kaplan DH, Barker J. Psoriasis. N Engl J Med. 2009;361(5):496-509. doi: 10.1056/NEJMra0804595

 

  1. Zhou Q, Mrowietz U, Rostami-Yazdi M. Oxidative stress in the pathogenesis of psoriasis. Free Radic Biol Med. 2009;47(7):891-905. doi: 10.1016/j.freeradbiomed.2009.06.033

 

  1. Lowes MA, Bowcock AM, Krueger JG. Pathogenesis and therapy of psoriasis. Nature. 2007;445(7130):866-873. doi: 10.1038/nature05663

 

  1. Rendon A, Schakel K. Psoriasis pathogenesis and treatment. Int J Mol Sci. 2019;20(6):1475. doi: 10.3390/ijms20061475

 

  1. Lin X, Huang T. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radic Res. 2016;50(6):585-595. doi: 10.3109/10715762.2016.1162301

 

  1. Keum H, Kim TW, Kim Y, et al. Bilirubin nanomedicine alleviates psoriatic skin inflammation by reducing oxidative stress and suppressing pathogenic signaling. J Control Release. 2020;325:359-369. doi: 10.1016/j.jconrel.2020.07.015

 

  1. Jiang XY, Yao Q, Xia X, et al. Self-assembled nanoparticles with bilirubin/JPH203 alleviate imiquimod-induced psoriasis by reducing oxidative stress and suppressing Th17 expansion. Chem Eng J. 2022;431:133956. doi: 10.1016/j.cej.2021.133956

 

  1. Jiang X, Huang S, Cai W, et al. Glutamine-based metabolism normalization and oxidative stress alleviation by self-assembled bilirubin/V9302 nanoparticles for psoriasis treatment. Adv Healthc Mater. 2023;12:e2203397. doi: 10.1002/adhm.202203397

 

  1. Williams HC. Clinical practice. Atopic dermatitis. N Engl J Med. 2005;352(22):2314-2324. doi: 10.1056/NEJMcp042803

 

  1. Spergel JM, Paller AS. Atopic dermatitis and the atopic march. J Allergy Clin Immunol. 2003;112(6 Suppl):S118-S127. doi: 10.1016/j.jaci.2003.09.033

 

  1. Dubrac S, Schmuth M, Ebner S. Atopic dermatitis: The role of Langerhans cells in disease pathogenesis. Immunol Cell Biol. 2010;88(4):400-409. doi: 10.1038/icb.2010.33

 

  1. Igyarto BZ, Kaplan DH. Antigen presentation by Langerhans cells. Curr Opin Immunol. 2013;25(1):115-119. doi: 10.1016/j.coi.2012.11.007

 

  1. Okayama Y. Oxidative stress in allergic and inflammatory skin diseases. Curr Drug Targets Inflamm Allergy. 2005;4(4):517-519. doi: 10.2174/1568010054526386

 

  1. Corsini E, Galbiati V, Nikitovic D, Tsatsakis AM. Role of oxidative stress in chemical allergens induced skin cells activation. Food Chem Toxicol. 2013;61:74-81.doi: 10.1016/j.fct.2013.02.038

 

  1. Kim YE, Choi SW, Kim MK, Nguyen TL, Kim J. Therapeutic hydrogel patch to treat atopic dermatitis by regulating oxidative stress. Nano Lett. 2022;22(5):2038-2047. doi: 10.1021/acs.nanolett.1c04899

 

  1. Banka N, Bunagan MJ, Shapiro J. Pattern hair loss in men: Diagnosis and medical treatment. Dermatol Clin. 2013;31(1):129-140. doi: 10.1016/j.det.2012.08.003

 

  1. Pathoulas JT, Flanagan KE, Walker CJ, Wiss IMP, Azimi E, Senna MM. Evaluation of standardized scalp photography on patient perception of hair loss severity, anxiety, and treatment. J Am Acad Dermatol. 2021;85(6):1640-1641. doi: 10.1016/j.jaad.2020.12.059

 

  1. Lolli F, Pallotti F, Rossi A, et al. Androgenetic alopecia: A review. Endocrine. 2017;57(1):9-17. doi: 10.1007/s12020-017-1280-y

 

  1. Jadkauskaite L, Coulombe PA, Schafer M, Dinkova- Kostova AT, Paus R, Haslam IS. Oxidative stress management in the hair follicle: Could targeting NRF2 counter age-related hair disorders and beyond? Bioessays. 2017;39(8):1700029. doi: 10.1002/bies.201700029

 

  1. Stoehr JR, Choi JN, Colavincenzo M, Vanderweil S. Off-label use of topical minoxidil in alopecia: A review. Am J Clin Dermatol. 2019;20(2):237-250. doi: 10.1007/s40257-018-0409-y

 

  1. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581-587. doi: 10.1016/j.addr.2003.10.023

 

  1. Chu SY, Chou CH, Huang HD, et al. Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nat Commun. 2019;10(1):1524. doi: 10.1038/s41467-019-09402-8

 

  1. Kim YS, Jeong KH, Kim JE, Woo YJ, Kim BJ, Kang H. Repeated microneedle stimulation induces enhanced hair growth in a murine model. Ann Dermatol. 2016;28(5):586-592. doi: 10.5021/ad.2016.28.5.586

 

  1. Yuan A, Xia F, Bian Q, et al. Ceria nanozyme-integrated microneedles reshape the perifollicular microenvironment for androgenetic alopecia treatment. ACS Nano. 2021;15(8):13759-13769. doi: 10.1021/acsnano.1c05272

 

  1. Zhang C, Yu Y, Shi S, et al. Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Lett. 2022;22(21):8592-8600. doi: 10.1021/acs.nanolett.2c03119

 

  1. Boulton AJ, Vileikyte L, Ragnarson-Tennvall G, Apelqvist J. The global burden of diabetic foot disease. Lancet. 2005;366(9498):1719-1724. doi: 10.1016/S0140-6736(05)67698-2

 

  1. Huang F, Lu X, Yang Y, et al. Microenvironment-based diabetic foot ulcer nanomedicine. Adv Sci (Weinh). 2023;10(2):e2203308. doi: 10.1002/advs.202203308

 

  1. Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci. 2018;1411(1):153-165. doi: 10.1111/nyas.13569

 

  1. Dunnill C, Patton T, Brennan J, et al. Reactive oxygen species (ROS) and wound healing: The functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017;14(1):89-96. doi: 10.1111/iwj.12557

 

  1. Wu H, Li F, Shao W, Gao J, Ling D. Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel. ACS Cent Sci. 2019;5(3):477-485. doi: 10.1021/acscentsci.8b00850

 

  1. Chao D, Dong Q, Yu Z, et al. Specific nanodrug for diabetic chronic wounds based on antioxidase-mimicking MOF-818 nanozymes. J Am Chem Soc. 2022;144(51):23438-23447. doi: 10.1021/jacs.2c09663

 

  1. Deng Y, Gao Y, Li T, et al. Amorphizing metal selenides-based ROS biocatalysts at surface nanolayer toward ultrafast inflammatory diabetic wound healing. ACS Nano. 2023;17(3):2943-2957. doi: 10.1021/acsnano.2c11448

 

  1. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420(6917):885-891. doi: 10.1038/nature01326

 

  1. Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776-787. doi: 10.1038/nri2402

 

  1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840-851. doi: 10.1056/NEJMra1208623

 

  1. Soh M, Kang DW, Jeong HG, et al. Ceria-zirconia nanoparticles as an enhanced multi-antioxidant for sepsis treatment. Angew Chem Int Ed Engl. 2017;56(38):11399-11403. doi: 10.1002/anie.201704904

 

  1. Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM. Dramatic reduction of the oxygen vacancy formation energy in ceria particles: A possible key to their remarkable reactivity at the nanoscale. J Mater Chem. 2010;20(46):10535-10546. doi: 10.1039/c0jm01908a

 

  1. Cao F, Zhang L, You Y, Zheng L, Ren J, Qu X. An enzyme-mimicking single-atom catalyst as an efficient multiple reactive oxygen and nitrogen species scavenger for sepsis management. Angew Chem Int Ed Engl. 2020;59(13):5108-5115. doi: 10.1002/anie.201912182

 

  1. Yim D, Lee DE, So Y, et al. Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species. ACS Nano. 2020;14(8):10324-10336. doi: 10.1021/acsnano.0c03807

 

  1. Kang JH, Super M, Yung CW, et al. An extracorporeal blood-cleansing device for sepsis therapy. Nat Med. 2014;20(10):1211-1216. doi: 10.1038/nm.3640

 

  1. Wei ZW, Fan ZY, Peng GG, et al. Extracorporeal hemoperfusion therapy for sepsis: Multi-lamellar microspheres towards cascade endotoxin removal and broad-spectrum radical eliminating. Chem Eng J. 2022;444:136499. doi: 10.1016/j.cej.2022.136499

 

  1. Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury. Nat Rev Dis Primers. 2017;3(1):17018. doi: 10.1038/nrdp.2017.18

 

  1. Visavadiya NP, Patel SP, VanRooyen JL, Sullivan PG, Rabchevsky AG. Cellular and subcellular oxidative stress parameters following severe spinal cord injury. Redox Biol. 2016;8:59-67. doi: 10.1016/j.redox.2015.12.011

 

  1. Xiong T, Yang K, Zhao T, et al. Multifunctional integrated nanozymes facilitate spinal cord regeneration by remodeling the extrinsic neural environment. Adv Sci (Weinh). 2023;10(7):e2205997. doi: 10.1002/advs.202205997

 

  1. Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci. 2017;20(5):637-647. doi: 10.1038/nn.4541

 

  1. Xu W, Chi L, Xu R, et al. Increased production of reactive oxygen species contributes to motor neuron death in a compression mouse model of spinal cord injury. Spinal Cord. 2005;43(4):204-213. doi: 10.1038/sj.sc.3101674

 

  1. Li L, Xiao B, Mu J, et al. A MnO(2) nanoparticle-dotted hydrogel promotes spinal cord repair via regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells. ACS Nano. 2019;13(12):14283-14293. doi: 10.1021/acsnano.9b07598

 

  1. Trevino S, Baumhauer JF. Tendon injuries of the foot and ankle. Clin Sports Med. 1992;11(4):727-739.

 

  1. Lui PPY, Zhang X, Yao S, Sun H, Huang C. Roles of oxidative stress in acute tendon injury and degenerative tendinopathy-a target for intervention. Int J Mol Sci. 2022;23(7):3571. doi: 10.3390/ijms23073571

 

  1. Wang S, Yao Z, Zhang X, et al. Energy-supporting enzyme-mimic nanoscaffold facilitates tendon regeneration based on a mitochondrial protection and microenvironment remodeling strategy. Adv Sci (Weinh). 2022;9(31):e2202542. doi: 10.1002/advs.202202542

 

  1. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809-1820. doi: 10.1016/S0140-6736(05)67728-8

 

  1. Battino M, Bullon P, Wilson M, Newman H. Oxidative injury and inflammatory periodontal diseases: The challenge of anti-oxidants to free radicals and reactive oxygen species. Crit Rev Oral Biol Med. 1999;10(4):458-476. doi: 10.1177/10454411990100040301

 

  1. Tian M, Chen GC, Xu JC, et al. Epigallocatechin gallate-based nanoparticles with reactive oxygen species scavenging property for effective chronic periodontitis treatment. Chem Eng J. 2022;433:132197. doi: 10.1016/j.cej.2021.132197

 

  1. Zarb GA, Fenton AH, Mackay HF. Maxillofacial prostheses and orofacial trauma. Dent Clin North Am. 1982;26(3):613-630. doi: 10.1016/S0011-8532(22)02375-8

 

  1. Jo JK, El-Fiqi A, Lee JH, Kim DA, Kim HW, Lee HH. Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dent Mater. 2017;33(10):e361-e372. doi: 10.1016/j.dental.2017.07.009

 

  1. Jin J, Mangal U, Seo JY, et al. Cerium oxide nanozymes confer a cytoprotective and bio-friendly surface micro-environment to methacrylate based oro-facial prostheses. Biomaterials. 2023;296:122063. doi: 10.1016/j.biomaterials.2023.122063

 

  1. Kulkarni SK, Dhir A. Current investigational drugs for major depression. Expert Opin Investig Drugs. 2009;18(6):767-788. doi: 10.1517/13543780902880850

 

  1. Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discov Today. 2020;25(7):1270-1276. doi: 10.1016/j.drudis.2020.05.001

 

  1. Sanoobar M, Dehghan P, Khalili M, Azimi A, Seifar F. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trial. Nutr Neurosci. 2016;19(3):138-143. doi: 10.1179/1476830515Y.0000000002

 

  1. Nery FG, Li W, DelBello MP, Welge JA. N-acetylcysteine as an adjunctive treatment for bipolar depression: A systematic review and meta-analysis of randomized controlled trials. Bipolar Disord. 2021;23(7):707-714. doi: 10.1111/bdi.13039

 

  1. Shivavedi N, Kumar M, Tej G, Nayak PK. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats. Brain Res. 2017;1674:1-9. doi: 10.1016/j.brainres.2017.08.019

 

  1. Fu S, Chen H, Yang W, et al. ROS-targeted depression therapy via BSA-incubated ceria nanoclusters. Nano Lett. 2022;22(11):4519-4527. doi: 10.1021/acs.nanolett.2c01334

 

  1. Whitcomb DC. Clinical practice. Acute pancreatitis. N Engl J Med. 2006;354(20):2142-2150. doi: 10.1056/NEJMcp054958

 

  1. Petrov MS. Therapeutic implications of oxidative stress in acute and chronic pancreatitis. Curr Opin Clin Nutr Metab Care. 2010;13(5):562-568. doi: 10.1097/MCO.0b013e32833b64b9

 

  1. Siriviriyakul P, Chingchit T, Klaikeaw N, Chayanupatkul M, Werawatganon D. Effects of curcumin on oxidative stress, inflammation and apoptosis in L-arginine induced acute pancreatitis in mice. Heliyon. 2019;5(8):e02222. doi: 10.1016/j.heliyon.2019.e02222

 

  1. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: Problems and promises. Mol Pharm. 2007;4(6):807-818. doi: 10.1021/mp700113r

 

  1. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem. 2017;60(5):1620-1637. doi: 10.1021/acs.jmedchem.6b00975

 

  1. Yao Q, Jiang X, Zhai YY, et al. Protective effects and mechanisms of bilirubin nanomedicine against acute pancreatitis. J Control Release. 2020;322:312-325. doi: 10.1016/j.jconrel.2020.03.034

 

  1. Xie X, Zhao J, Gao W, et al. Prussian blue nanozyme-mediated nanoscavenger ameliorates acute pancreatitis via inhibiting TLRs/NF-kappaB signaling pathway. Theranostics. 2021;11(7):3213-3228. doi: 10.7150/thno.52010

 

  1. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood. 2006;107(1):358-366. doi: 10.1182/blood-2005-04-1418

 

  1. Einor D, Bonisoli-Alquati A, Costantini D, Mousseau TA, Moller AP. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis. Sci Total Environ. 2016;548-549:463-471. doi: 10.1016/j.scitotenv.2016.01.027

 

  1. Xie J, Wang C, Zhao F, Gu Z, Zhao Y. Application of multifunctional nanomaterials in radioprotection of healthy tissues. Adv Healthc Mater. 2018;7(20):e1800421. doi: 10.1002/adhm.201800421

 

  1. Ren X, Huo M, Wang M, et al. Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging. ACS Nano. 2019;13(6):6438-6454. doi: 10.1021/acsnano.8b09327

 

  1. Rageh MM, El-Gebaly RH, Abou-Shady H, Amin DG. Melanin nanoparticles (MNPs) provide protection against whole-body γ-irradiation in mice via restoration of hematopoietic tissues. Mol Cell Biochem. 2015;399(1-2):59-69. doi: 10.1007/s11010-014-2232-y

 

  1. Zhang B, Chen G, Wu X, et al. Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for treatment of radiation-induced hematopoietic injury. Biomaterials. 2023;293:121980. doi: 10.1016/j.biomaterials.2022.121980

 

  1. Wei F, Neal CJ, Sakthivel TS, et al. A novel approach for the prevention of ionizing radiation-induced bone loss using a designer multifunctional cerium oxide nanozyme. Bioact Mater. 2023;21:547-565. doi: 10.1016/j.bioactmat.2022.09.011

 

  1. Han SI, Lee SW, Cho MG, et al. Epitaxially strained CeO(2)/ Mn(3) O(4) nanocrystals as an enhanced antioxidant for radioprotection. Adv Mater. 2020;32(31):e2001566. doi: 10.1002/adma.202001566

 

  1. Sun Q, Li Y, Shi L, et al. Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology. 2022;469:153136. doi: 10.1016/j.tox.2022.153136

 

  1. Feldman RG, Ricks NL, Baker EL. Neuropsychological effects of industrial toxins: A review. Am J Ind Med. 1980;1(2):211-227. doi: 10.1002/ajim.4700010212

 

  1. Xu X, Nie S, Ding H, Hou FF. Environmental pollution and kidney diseases. Nat Rev Nephrol. 2018;14(5):313-324. doi: 10.1038/nrneph.2018.11

 

  1. Horton CJ, Acharya L, Wells EM. Association between self-reported length of time in the USA and blood lead levels: National Health and Nutrition Examination Survey 2013-2016. BMJ Open. 2019;9(7):e027628. doi: 10.1136/bmjopen-2018-027628

 

  1. Sakthithasan K, Levy P, Poupon J, Garnier R. A comparative study of edetate calcium disodium and dimercaptosuccinic acid in the treatment of lead poisoning in adults. Clin Toxicol (Phila). 2018;56(11):1143-1149. doi: 10.1080/15563650.2018.1478424

 

  1. Pazirandeh M, Wells BM, Ryan RL. Development of bacterium-based heavy metal biosorbents: Enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol. 1998;64(10):4068-4072. doi: 10.1128/AEM.64.10.4068-4072.1998

 

  1. Pan P, Fan JX, Wang XN, et al. Bio-orthogonal bacterial reactor for remission of heavy metal poisoning and ROS elimination. Adv Sci (Weinh). 2019;6(24):1902500. doi: 10.1002/advs.201902500
Conflict of interest
The authors declare no conflicts of interest.
Share
Back to top
Innovative Medicines & Omics, Published by AccScience Publishing