Fermentation-derived compounds and their impact on skin health and dermatology: A review

Fermented plant extracts have recently become popular ingredients in various cosmetic and dermal applications, mainly because of their superior biological activities. In fermentation by microorganisms, the concentration of the useful compound is increased or new phytochemicals are introduced, enhancing their biological activity in anti-inflammatory, antibacterial, wound-healing, anti-melanogenic, and antioxidant applications. The fermented state of Panax ginseng shows higher anti-wrinkle and whitening effects than its non-fermented counterpart. Black ginseng promotes collagen synthesis and inhibits melanogenesis after fermentation. Fermented extracts of Magnolia denudata, organic Indica rice bran, and unpolished Black rice also show very good antioxidant and skin-whitening activities. Hyaluronic acid, kojic acid, citric acid, glycolic acid, and ascorbic acid are acids produced by the fermentation of natural products, forming smaller molecules size that are more effective than high molecular size and able to penetrate deeply into the skin, maintaining its microbiota balance and providing antioxidant protection. Fermented vitamins include B3, A, and E produced through microbial fermentation with added stability and bioactivity to contribute toward better skin health, promotion of absorption, anti-inflammation, and antioxidant properties. Skin health is modulated by its resident microbiota and their metabolites, among which fermented microorganisms have gained interest as active skincare ingredients. It is known that metabolites from skin-associated bacteria improve skin pigmentation and wrinkle appearance, such as Nitrosomonas eutropha, which oxidizes ammonia produced from sweat into nitric oxide derivatives. Similarly, antimicrobial peptide from Enterococcus faecalis strain proved to be potent against Cutibacterium acnes; hence, anti-acne treatments have been commercialized. In addition, Vitreoscilla filiformis found in hot springs significantly ameliorated symptoms of atopic dermatitis and photoaging while Streptococcus thermophilus enhanced levels of the natural ceramides, thereby enhancing skin barrier and hydration.
- Zofia NŁ, Aleksandra Z, Tomasz B, et al. Effect of fermentation time on antioxidant and anti-ageing properties of green coffee kombucha ferments. Molecules. 2020;25(22):5394. doi: 10.3390/molecules25225394
- Ramadhania ZM, Yang DU, Moektiwardojo M, et al. Enhanced anti-skin aging effects of fermented black ginseng (Panax ginseng CA Meyer) by Aspergillus niger KHNT-1. Appl Sci. 2022;13(1):550. doi: 10.3390/app13010550
- Corbu VM, Gheorghe-Barbu I, Dumbrava AS, Vrâncianu CO. Current insights in fungal importance-a comprehensive review. Microorganisms. 2023;11:1384. doi: 10.3390/microorganisms11061384
- Ragusa I, Nardone GN, Zanatta S, Bertin W, Amadio E. Spirulina for skin care: A bright blue future. Cosmetics. 2021;8:7. doi: 10.3390/cosmetics8010007
- Liu Z, Liu X, Ma Z, Guan T. Phytosterols in rice bran and their health benefits. Front Nutr. 2023;10:1287405. doi: 10.3389/fnut.2023.1287405
- Sourabh A, Rai AK, Chauhan A, et al. Health related issues and indigenous fermented products. In: Indigenous fermented foods of South Asia. Vol. 7. United States: CRC Press; 2015. p. 309.
- Hrubša M, Siatka T, Nejmanová I, et al. Biological properties of vitamins of the B-complex, part 1: Vitamins B1, B2, B3, and B5. Nutrients. 2022;14(3):484. doi: 10.3390/nu14030484
- Stavrakidis KKS. Probiotics: Benefits on Skin Health and Therapeutical Potential. Doctoral dissertation, University of Rijeka; 2024.
- Zhao YS, Eweys AS, Zhang JY, et al. Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants (Basel). 2021;10(12):2004. doi: 10.3390/antiox10122004
- Lee HS, Kim MR Park Y, et al. Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: In vitro and animal study. J Med Food. 2012;15(11):1015-1023. doi: 10.1089/jmf.2012.2187
- You S, Shi X, Yu D, et al. Fermentation of Panax notoginseng root extract polysaccharides attenuates oxidative stress and promotes type I procollagen synthesis in human dermal fibroblast cells. BMC Complement Med Ther. 2021;21(1):34. doi: 10.1186/s12906-020-03197-8
- Pham QL, Jang HJ, Kim KB. Anti-wrinkle effect of fermented black ginseng on human fibroblasts. Int J Mol Med. 2017;39(3):681-686. doi: 10.3892/ijmm.2017.2858
- Park JJ, An J, Lee JD, et al. Effects of anti-wrinkle and skin-whitening fermented black ginseng on human subjects and underlying mechanism of action. J Toxicol Environ Health A. 2020;83(11-12):470-484. doi: 10.1080/15287394.2020.1777492
- Herman A, Herman AP. Biological activity of fermented plant extracts for potential dermal applications. Pharmaceutics. 2023;15(12):2775. doi: 10.3390/pharmaceutics15122775
- Chen LH, Chen IC, Chen PY, Huang PH. Efficacy of rice bran fermentation in cosmetics and skin care products. Biosci J. 2018;34:1102-1113. doi: 10.14393/BJ-v34n1a2018-39976
- Sangkaew O, Yompakdee C. Fermented unpolished black rice (Oryza sativa L.) inhibits melanogenesis via ERK, p38, and AKT phosphorylation in B16F10 melanoma cells. J Microbiol Biotechnol. 2020;30(8):1184-1194. doi: 10.4014/jmb.2003.03019
- Korea Intellectual Property Office. Registered Patent Gazette. Patent No. 0884424. Korea Intellectual Property Office; 2006. p. 1-71.
- Lee SW, Lim JM, Mohan H, et al. Enhanced bioactivity of Zanthoxylum schinifolium fermented extract: Anti-inflammatory, anti-bacterial, and anti-melanogenic activity. J Biosci Bioeng. 2020;129(5):638-645. doi: 10.1016/j.jbiosc.2019.12.003
- Pérez-Rivero C, López-Gómez JP. Unlocking the potential of fermentation in cosmetics: A review. Fermentation. 2023;9(5):463. doi: 10.3390/fermentation9050463
- Ciriminna R, Scurria A, Pagliaro M. Microbial production of hyaluronic acid: The case of an emergent technology in the bioeconomy. Biofuels Bioprod Biorefin. 2021;15(6):1604-1610. doi: 10.1002/bbb.2285
- Mohan N, Balakrishnan R, Sivaprakasam S. Optimization and effect of dairy industrial waste as media components in the production of hyaluronic acid by Streptococcus thermophilus. Prep Biochem Biotechnol. 2016;46(6):628-638. doi: 10.1080/10826068.2015.1128446
- Pavicic T, Gauglitz GG, Lersch P, et al. Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment. J Drugs Dermatol. 2011;10(9):990-1000.
- Chib S, Jamwal VL, Kumar V, Gandhi SG, Saran S. Fungal production of kojic acid and its industrial applications. Appl Microbiol Biotechnol. 2023;107(7-8):2111-2130. doi: 10.1007/s00253-023-12451-1
- Show PL, Oladele KO, Siew QY, Aziz Zakry FA, Lan JCW, Ling TC. Overview of citric acid production from Aspergillus niger. Front Life Sci. 2015;8(3):271-283. doi: 10.1080/21553769.2015.1033653
- Kamzolova SV. A review on citric acid production by Yarrowia lipolytica yeast: Past and present challenges and developments. Processes. 2023;11(12):3435. doi: 10.3390/pr11123435
- Lu X, Yao Y, Yang Y, et al. Ethylene glycol and glycolic acid production by wild-type Escherichia coli. Biotechnol Appl Biochem. 2021;68(4):744-755. doi: 10.1002/bab.1987
- Paciolla C, Fortunato S, Dipierro N, et al. Vitamin C in plants: From functions to biofortification. Antioxidants (Basel). 2019;8(11):519. doi: 10.3390/antiox8110519
- Kawahori K, Kondo Y, Yuan X, et al. Ascorbic acid during the suckling period is required for proper DNA demethylation in the liver. Sci Rep. 2020;10(1):21228. doi: 10.1038/s41598-020-77962-7
- Timoshnikov VA, Kobzeva TV, Polyakov NE, Kontoghiorghes GJ. Redox interactions of vitamin C and iron: Inhibition of the pro-oxidant activity by deferiprone. Int J Mol Sci. 2020;21(11):3967. doi: 10.3390/ijms21113967
- Zhang Q, Lyu S. Microbial interactions in a vitamin C industrial fermentation system: Novel insights and perspectives. Appl Environ Microbiol. 2022;88(18):e0121222. doi: 10.1128/aem.01212-22
- Dattola A, Silvestri M, Bennardo L, et al. Role of vitamins in skin health: A systematic review. Curr Nutr Rep. 2020;9(3):226-235. doi: 10.1007/s13668-020-00322-4
- Wang J, Wu Y, Ning F, Zhang C, Zhang D. The association between leisure-time physical activity and risk of undetected prediabetes. J Diabetes Res. 2017;2017:4845108. doi: 10.1155/2017/4845108
- Larroude M, Rossignol T, Nicaud JM, Ledesma-Amaro R. Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnol Adv. 2018;36(8):2150-2164. doi: 10.1016/j.biotechadv.2018.10.004
- Thiele JJ, Hsieh SN, Ekanayake-Mudiyanselage S. Vitamin E: Critical review of its current use in cosmetic and clinical dermatology. Dermatol Surg. 2005;31(7):805- 813; discussion 813. doi: 10.1111/j.1524-4725.2005.31724
- Zussman J, Ahdout J, Kim J. Vitamins and photoaging: Do scientific data support their use? J Am Acad Dermatol. 2010;63(3):507-525. doi: 10.1016/j.jaad.2009.07.037
- Wang Y, Liu L, Jin Z, Zhang D. Microbial cell factories for green production of vitamins. Front Bioeng Biotechnol. 2021;9:661562. doi: 10.3389/fbioe.2021.661562
- Harris-Tryon TA, Grice EA. Microbiota and maintenance of skin barrier function. Science. 2022;376(6596):940-945. doi: 10.1126/science.abo0693
- Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346(6212):954-959. doi: 10.1126/science.1260144
- Pessôa R, Clissa PB, Sanabani SS. The interaction between the host genome, epigenome, and the gut-skin axis microbiome in atopic dermatitis. Int J Mol Sci. 2023;24(18):14322. doi: 10.3390/ijms241814322
- Blume-Peytavi U, Bagot M, Tennstedt D, et al. Dermatology today and tomorrow: From symptom control to targeted therapy. J Eur Acad Dermatol Venereol. 2019;33:3-36. doi: 10.1111/jdv.15335
- Levin BJ. Discovery and Characterization of Glycyl Radical Enzymes Found in the Human Gut Microbiota and Other Environments. Doctoral dissertation, Harvard University; 2019.
- Kamble NS, Bera S, Bhedase SA, Gaur V, Chowdhury D. Review on applied applications of microbiome on human lives. Bacteria. 2024;3(3):141-159. doi: 10.3390/bacteria3030010
- Tóth KF, Ádám D, Bíró T, Oláh A. Cannabinoid signaling in the skin: Therapeutic potential of the “C(ut)annabinoid” system. Molecules. 2019;24(5):918. doi: 10.3390/molecules24050918
- Mourelle ML, Gómez CP, Legido JL, Pereira L. Role of nutribiotics in skin care. Appl Sci. 2024;14(8):3505. doi: 10.3390/app14083505
- Bikle DD. Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol. 2014;21(3):319-329. doi: 10.1016/j.chembiol.2013.12.016
- Joshi M, Hiremath P, John J, Ranadive N, Nandakumar K, Mudgal J. Modulatory role of vitamins A, B3, C, D, and E on skin health, immunity, microbiome, and diseases. Pharmacol Rep. 2023;75(5):1096-1114. doi: 10.1007/s43440-023-00520-1
- Peng H, Chu C, Jin L, et al. Study on Oleum cinnamomi inhibiting Cutibacterium acnes and its covalent inhibition mechanism. Molecules. 2024;29(13):3165. doi: 10.3390/molecules29133165
- Ikeda M, Nakagawa S. The Corynebacterium glutamicum genome: Features and impacts on biotechnological processes. Appl Microbiol Biotechnol. 2003;62(2-3):99-109. doi: 10.1007/s00253-003-1328-1
- Aoki R, Wada M, Takesue N, Tanaka K, Yokota A. Enhanced glutamic acid production by a H+-ATPase-defective mutant of Corynebacterium glutamicum. Biosci Biotechnol Biochem. 2005;69(8):1466-1472. doi: 10.1271/bbb.69.1466
- Zahoor A, Lindner SN, Wendisch VF. Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol J. 2012;3(4):e201210004. doi: 10.5936/csbj.201210004
- Jara CP, de Andrade Berti B, Mendes NF, et al. Glutamic acid promotes hair growth in mice. Sci Rep. 2021;11(1):15453. doi: 10.1038/s41598-021-94816-y
- Arribas-López E, Zand N, Ojo O, Snowden MJ, Kochhar T. The effect of amino acids on wound healing: A systematic review and meta-analysis on arginine and glutamine. Nutrients. 2021;13(8):2498. doi: 10.3390/nu13082498
- Pedrazini MC, Groppo FC. L-lysine therapy to control the clinical evolution of Pityriasis rosea: Clinical case report and literature review. Dermatol Ther. 2021;34(1):e14679. doi: 10.1111/dth.14679
- Kim H, Ro J, Barua S, et al. Combined skin moisturization of liposomal serine incorporated in hydrogels prepared with Carbopol ETD 2020, Rhesperse RM 100, and hyaluronic acid. Korean J Physiol Pharmacol. 2015;19(6):543-547. doi: 10.4196/kjpp.2015.19.6.543
- Marini A, Grether-Beck S, Jaenicke T, et al. Prolidase in skin aging and its relation to photoaging. Exp Dermatol. 2012;21(5):347-350.
- Proksch E, Segger D, Degwert J, et al. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: A double-blind, placebo-controlled study. Skin Pharmacol Physiol. 2014;27(1):47-55. doi: 10.1159/000351376
- Karna E, Miltyk W, Pałka JA, Wołczyński S, Kedzierska M. Proline-dependent and basophilic protein kinases in human skin fibroblasts. Acta Biochim Pol. 2006;53(3):591-597.
- Licari A, Marseglia A, Agostinis F, Milani M, Marseglia GL. Barrier repair therapy in atopic eczema: Effects of isoleucine, rhamnosoft, ceramides, and niacinamide facial and body creams on clinical, itch, and Staphylococcus aureus skin colonization: A prospective assessor-blinded study. Clin Pediatr Dermatol. 2016;2:1. doi: 10.21767/2472-0143.100010
- Marseglia A, Licari A, Agostinis F, et al. Local rhamnosoft, ceramides and L-isoleucine in atopic eczema: A randomized, placebo controlled trial. Pediatr Allergy Immunol. 2014;25(3):271-275. doi: 10.1111/pai.12227
- Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539-549. doi: 10.1111/j.1751-1097.2007.00226.x
- Solano F. Photoprotection versus photodamage: Updating an old but still unsolved controversy about melanin. Polym Int. 2016;65:1276-1287. doi: 10.1002/pi.5117
- Solano F. Melanins: Skin pigments and much more-Types, structural models, biological functions, and formation routes. New J Sci. 2014;2014:498276. doi: 10.1155/2014/498276
- Fajuyigbe D, Lwin SM, Diffey BL, et al. Melanin distribution in human epidermis affords localized protection against DNA photodamage and concurs with skin cancer incidence difference in extreme phototypes. FASEB J. 2018; 32(7):3700-3706. doi: 10.1096/fj.201701472R
- Schallreuter KU, Wazira U, Kothari S, Gibbons NCJ, Moore J, Wood JM. Human phenylalanine hydroxylase is activated by H2O2: A novel mechanism for increasing the l-tyrosine supply for melanogenesis in melanocytes. Biochem Biophys Res Commun. 2004;322(1):88-92. doi: 10.1016/j.bbrc.2004.07.082
- Slominski A, Moellmann G, Kuklinska E, Bomirski A, Pawelek J. Positive regulation of melanin pigmentation by two key substrates of the melanogenic pathway, L-tyrosine and L-dopa. J Cell Sci. 1988;89:287-296. doi: 10.1242/jcs.89.3.287
- Serre C, Busuttil V, Botto JM. Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. Int J Cosmet Sci. 2018;40:328-347. doi: 10.1111/ics.12466
- Sardana K, Garg VK. An observational study of methionine-bound zinc with antioxidants for mild to moderate acne vulgaris. Dermatol Ther. 2010;23(4):411-418. doi: 10.1111/j.1529-8019.2010.01342.x
- Danzberger J, Donovan M, Rankl C, et al. Glycan distribution and density in native skin’s stratum corneum. Skin Res Technol. 2018;24(3):450-458. doi: 10.1111/srt.12453
- Reilly DM, Lozano J. Skin collagen through the lifestages: Importance for skin health and beauty. Plast Aesthetic Res. 2021;8:2. doi: 10.20517/2347-9264.2020.153
- Miniaci MC, Irace C, Capuozzo A, et al. Cysteine prevents the reduction in keratin synthesis induced by iron deficiency in human keratinocytes. J Cell Biochem. 2016;117(2):402-412. doi: 10.1002/jcb.25286
- Altunbulakli C. Microbiome and Transcriptome Interactions in Epithelial Tissues in the Context of Allergic Diseases. [dissertation], University of Zurich; 2018.
- Dua A, Nigam A, Saxena A, Dhingra GG, Kumar R. Microbial bioproduction of antiaging molecules. In: Microbial Bioreactors for Industrial Molecules. United States: John Wiley & Sons; 2023. p. 465-485.
- Joshi AA, Vocanson M, Nicolas JF, Wolf P, Patra V. Microbial derived antimicrobial peptides as potential therapeutics in atopic dermatitis. Front Immunol. 2023;14:1125635. doi: 10.3389/fimmu.2023.1125635
- Chen YE, Fischbach MA, Belkaid Y. Skin microbiota-host interactions. Nature. 2018;553(7689):427-436. doi: 10.1038/nature25177
- Stone PM. The Skin, selected dermatologic conditions, and medical nutrition therapy. In: Integrative and Functional Medical Nutrition Therapy: Principles and Practices. Berlin, Germany: Springer Nature; 2020. p. 969-1002.
- Dej-Adisai S, Parndaeng K, Wattanapiromsakul C. Determination of phytochemical compounds, and tyrosinase inhibitory and antimicrobial activities of bioactive compounds from Streblus ilicifolius (S Vidal) Corner. Trop J Pharm Res. 2016;15(3):497-506. doi: 10.4314/tjpr.v15i3.10
- Shafiuddin M, Prather GW, Huang WC, et al. Cutibacterium adaptation to life on humans provides a novel biomarker of C. acnes infections. bioRxiv [Preprint]. 2024. doi: 10.1101/2024.09.18.613542
- Otsuka A, Moriguchi C, Shigematsu Y, et al. Fermented cosmetics and metabolites of skin microbiota-A new approach to skin health. Fermentation. 2022;8(12):703. doi: 10.3390/fermentation8120703
- Manisha N. The use of topical Nitrosomonas eutropha for cosmetic improvement of facial wrinkles. J Cosmet Dermatol. 2020;19(2):689-693. doi: 10.1111/jocd.13060
- Lee YJ, Choi HJ, Kang TW, Kim HO, Chung MJ, Park YM. CBT-SL5, a bacteriocin from Enterococcus faecalis, suppresses the expression of interleukin-8 induced by Propionibacterium acnes in cultured human keratinocytes. J Microbiol Biotechnol. 2008;18(12):1308-1316.
- Guéniche A, Hennino A, Goujon C, et al. Improvement of atopic dermatitis skin symptoms by Vitreoscilla filiformis bacterial extract. Eur J Dermatol. 2006;16(4):380-384.
- Gueniche A, Valois A, Kerob D, Rasmont V, Nielsen M. A combination of Vitreoscilla filiformis extract and Vichy volcanic mineralizing water strengthens the skin defenses and skin barrier. J Eur Acad Dermatol Venereol. 2022;36(Suppl S2):16-25. doi: 10.1111/jdv.17786
- Seite S, Zelenkova H, Martin R. Clinical efficacy of emollients in atopic dermatitis patients-relationship with the skin microbiota modification. Clin Cosmet Investig Dermatol. 2017;10:25-33. doi: 10.2147/CCID.S121910
- Di Marzio L, Cinque B, Cupelli F, De Simone C, Cifone MG, Giuliani M. Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int J Immunopathol Pharmacol. 2008;21(1):137-143. doi: 10.1177/039463200802100115
- Di Marzio L, Centi C, Cinque B, et al. Effect of the lactic acid bacterium Streptococcus thermophilus on stratum corneum ceramide levels and signs and symptoms of atopic dermatitis patients. Exp Dermatol. 2003;12(6):615-620. doi: 10.1034/j.1600-0625.2003.00051.x
- Kim WK, Jang YJ, Han DH, et al. Lactobacillus paracasei KBL382 administration attenuates atopic dermatitis by modulating immune response and gut microbiota. Gut Microbes. 2020;12:1-14. doi: 10.1080/19490976.2020.1819156
- Kwon JE, Lim J, Bang I, Kim I, Kim D, Kang SC. Fermentation product with new equol-producing Lactobacillus paracasei as a probiotic-like product candidate for prevention of skin and intestinal disorder. J Sci Food Agric. 2019;99(9):4200-4210. doi: 10.1002/jsfa.9648
- Miyaguchi E. Lactobacillus rhamnosus alleviates intestinal barrier dysfunction in part by increasing expression of zonula occludens-1 and myosin light-chain kinase in vivo. J Dairy Sci. 2009;92(5):2400-2408. doi: 10.3168/jds.2008-1698
- Jung YO, Jeong H, Cho Y, et al. Lysates of a probiotic, Lactobacillus rhamnosus, can improve skin barrier function in a reconstructed human epidermis model. Int J Mol Sci. 2019;20(17):4289. doi: 10.3390/ijms20174289
- Kim NY, Lee HY. Enhancement of skin whitening and anti-wrinkle activities of the co-culture of Lactobacillus rhamnosus and Lactobacillus paracasei. J Soc Cosmet Sci Korea. 2015;41(4):253-261. doi: 10.15230/SCSK.2015.41.3.253
- Huang X, Liu S, Xu W, Wang Q, Zhou Z, Zhang Q. Skin microbiota composition and functional diversity of ammonia-oxidizing bacteria: A potential role in skin health. Sci Rep. 2020;10(1):15591.
- Kim JE, Lee YM, Lim Y. Evaluation of the anti-acne effects of Enterococcus faecalis-derived antimicrobial peptides. J Microbiol Biotechnol. 2019;29(11):1694-1702.
- Gueniche A, Bastien P, Ovigne JM, et al. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp Dermatol. 2010;19(8):e1-e8. doi: 10.1111/j.1600-0625.2009.00932.x
- Kober MM, Bowe WP, Gallo RL. Skin microbiome and acne. J Drugs Dermatol. 2015;14(10):1093-1096.
- Gueniche A, Philippe D, Bastien P, Reuteler G, Blum S, Castiel-Higounenc I, Breton L. Randomized double-blind placebo-controlled study of the effect of Vitreoscilla filiformis extract on skin microbiota in atopic dermatitis. Eur J Dermatol. 2006;16(1):52-57.
- Jeong D, Kim DH, Kang IB, Kim H, Song KY, Kim H. Modulation of the skin microbiome by fermenting strains of Lactobacillus plantarum improves atopic dermatitis. J Dermatol Sci. 2013;71(3):121-125.
- Nakatsuji T, Chen TH, Butcher AM, et al. Staphylococcus epidermidis produces antimicrobial peptides that kill pathogens and protect the skin. Nat Commun. 2017;8(1):1-9.
- Cogen AL, Yamasaki K, Sanchez KM, et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J Invest Dermatol. 2010;130(1):192-200. doi: 10.1038/jid.2009.243
- Yu Q, Jia Z, Liang X. Probiotic Lactobacillus reuteri reduces endodontic infection and promotes skin health. J Endod. 2015;41(12):2037-2045.
- Thiyagarajan P, Sivasankari S, Latha S. Characterization and biological potential of surfactin produced by Bacillus subtilis strain MZ-7. Braz Arch Biol Technol. 2016;59:e16150515.
- Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in human health and diseases. Front Microbiol. 2018;9:757. doi: 10.3389/fmicb.2018.00757
- Alara JA, Alara OR, Abdurahman NH. Role of biosurfactants in biocidal activity and wound healing. In: Advancements in Biosurfactants Research. Cham: Springer International Publishing; 2023. p. 399-437.