AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/IJOCTA025310138
RESEARCH ARTICLE

Optimizing subgroup selection in petrochemical industries: A robust data envelopment analysis approach for uncertainty management

Sadegh Niroomand1* Hilda Saleh2 Morteza Shafiee3 Dragan Pamucar4* Ali Mahmoodirad5
Show Less
1 Department of Industrial Engineering, Firouzabad Higher Education Center, Shiraz University of Technology, Shiraz, Iran
2 Department of Mathematics, CT. C., Islamic Azad University, Tehran, Iran
3 School of Business and Law, Edith Cowan University, Perth, Australia
4 Sustainability Competence Centre, Széchenyi István University, Győr, Hungary
5 Department of Mathematics, Bab. C., Islamic Azad University, Babol, Iran
Received: 3 August 2025 | Revised: 16 October 2025 | Accepted: 20 October 2025 | Published online: 18 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This study addresses the critical challenge faced by organizations in selecting an optimal subgroup of decision-making units (DMUs). Such a selection procedure can significantly influence efficiency, profitability, and strategic development. Recognizing the limitations of existing methods in handling inexact data and incorporating managerial preferences, this study proposes a novel framework that integrates data envelopment analysis (DEA) with binary linear programming models. The model applies belief-degree–based representations of uncertainty to capture imprecise inputs and outputs. For this model, two solution approaches—namely, chance-constrained programming and expected value approaches—were developed. These approaches are suitable for real world applications using standard optimization software. The effectiveness of the proposed method was validated through a case study in Iran’s petrochemical industry, where it successfully identified the optimal technology for a new refinery unit while balancing efficiency and profitability under uncertainty. This work is the first study in the literature to combine DEA and binary linear programming under belief-degree–based uncertainty for DMU selection, offering a systematic, practical, and computationally efficient solution, with recommendations for future research to explore alternative uncertainty modeling techniques and broader industrial applications.

Graphical abstract
Keywords
Belief degree
Data envelopment analysis
Expected value model
Optimal subgroup selection
Petrochemical industry
Uncertain data envelopment analysis
Funding
None.
Conflict of interest
The authors certify that none of our interests is in conflict with one another. Each author attests to having contributed enough to the work to accept public accountability for its content, including assistance with the concept, design, analysis, writing, and editing of the text. All individuals who meet the standards for authorship are listed as authors. Additionally, each author attests that, prior to its publishing in the journal, none of the content in this or related works has been submitted to or published in any other magazine.
References
  1. Modhej D, Sanei M, Shoja N, Hosseinzadeh LotfiF. Integrating inverse data envelopment analysis and neural network to preserve relative efficiency values. J Intell Fuzzy Syst. 2017;32(6):4047-4058. https://doi.org/10.3233/JIFS-162926

 

  1. Monzeli A, Daneshian B, Tohidi G, Sanei M, Razaveian S. Improving hospital efficiency and economic performance: a DEA approach with un- desirable factors in Tehran emergency wards. Int J Econ Sci. 2025;14(1):90-107. https://doi.org/10.31181/ijes1412025174

 

  1. Farrell MJ. The measurement of productive efficiency. J R Stat Soc A. 1957;120(3):253-281. https://doi.org/10.2307/2343100

 

  1. Charnes A, Cooper WW, Rhodes E. Measuring the efficiency of decision-making units. Eur J Oper Res. 1978;2(6):429-444. https://doi.org/10.1016/0377-2217(78)90138-8

 

  1. Banker RD, Charnes A, Cooper WW. Some mod- els for estimating technical and scale inefficiencies in data envelopment analysis. Manag Sci. 1982;28(9):1078-1092. https://www.jstor.org/stable/2631725

 

  1. Contreras I. A review of the literature on DEA models under common set of weights. J Model Manag. 2020;15(4):1277-1300. https://doi.org/10.1108/JM2-02-2019-0043

 

  1. Modarresi N, Darvishi M, Banihashemi S. Modeling sustainable development of cryptocurrencies by a fractional pure-jump process in DEA frame- work. Int J Econ Sci. 2025;14(1):108-122. https://doi.org/10.31181/ijes1412025178

 

  1. Basuri T, Gazi KH, Bhaduri P, Das SG, Mondal SP. Decision-analytics-based sustainable location problem-neutrosophic CRITIC-COPRAS assessment model. Manag Sci Adv. 2025;2(1):19-58. https://doi.org/10.31181/msa2120257

 

  1. Mahmoodirad A, Sanei M. Solving a multi- stage multi-product solid supply chain network design problem by meta-heuristics. Sci Iran. 2016;23(3):1428-1440. https://doi.org/10.24200/sci.2016.3908

 

  1. Molla-Alizadeh-Zavardehi S, Mahmoodirad A, Rahimian M. Step fixed charge transportation problems via genetic algorithm. Indian J Sci Technol. 2014;7(7):949. https://doi.org/10.17485/ijst/2014/v7i7.5

 

  1. Contreras I, Brey R, Carazo AF, Brey JJ. A DEA based procedure for the selection of subgroups. Appl Math Model. 2014;38(17-18):4538-4547. https://doi.org/10.1016/j.apm.2014.03.015

 

  1. Amirteimoori A, Allahviranloo T, Khoshandam L. Marginal rates of technical changes and impact in stochastic data envelopment analysis: an application in power industry. Expert Syst Appl. 2024;237:121722. https://doi.org/10.1016/j.eswa.2023.12172

 

  1. Mondal S, Goswami SS, Gupta KK, Sahoo SK. Synergistic effects of lean manufacturing and digitalization on operational effectiveness: a comprehensive review. Spectr Decis Mak Appl. 2026;3(1):21-39. https://doi.org/10.31181/sdmap31202634

 

  1. Sanei M, Rostamy-Malkhalifeh M, Saleh H. A new method for solving fuzzy DEA models. Int J Ind Math. 2009;1(4):307-313.

 

  1. Sanei M, Noori N, Saleh H. Sensitivity analysis with fuzzy data in DEA. Appl Math Sci. 2009;3(25):1235-1241.

 

  1. Shafiee M, Saleh H. Evaluation of strategic performance with fuzzy data envelopment analysis. Int J Data Envelopment Anal. 2019;7(4):1-20.

 

  1. Shirazi F, Mohammadi E. Evaluating efficiency of airlines: a new robust DEA approach with undesirable output. Res Transp Bus Manag. 2019;33:100467. https://doi.org/10.1016/j.rtbm.2020.100467

 

  1. Mehdiabadi A, Sadeghi A, Yazdi AK, Tan Y. Sustainability service chain capabilities in the oil and gas industry: a fuzzy hybrid approach SWARA- MABAC. Spectr Oper Res. 2025;2(1):92-112. https://doi.org/10.31181/sor21202512

 

  1. Liu B. Uncertainty Theory. 2nd ed. Berlin, Heidelberg: Springer; 2007. https://doi.org/10.1007/978-3-540-73165-8

 

  1. Niroomand S, Pamucar D, Mahmoodirad A. Formulation and solution approach for uncertain multi-objective material requirement planning problem with multi-mode demand, overtime production, and outsourcing possibilities. J Syst Sci Syst Eng. 2025;34(1):1-28. https://doi.org/10.1007/s11518-024-5627-7

 

  1. Farzan N, Mahmoodirad A, Niroomand S, Molla- Alizadeh-Zavardehi S. A sustainable uncertain integrated supply chain network design and assembly line balancing problem with U-shaped assembly lines and multi-mode demand. Soft Comput. 2024;28:2967-2986. https://doi.org/10.1007/s00500-023-09227-0

 

  1. Niroomand S, Aviso KB, Mahmoodirad A. An uncertain multi-objective model for simultaneous design of supply chain and assemblers considering sustainable development: a case study. CIRP J Manuf Sci Technol. 2023;47:86-102. https://doi.org/10.1016/j.cirpj.2023.08.007

 

  1. Mamoodird A, Niroomand S. A belief degree- based uncertain scheme for a bi-objective two-stage green supply chain network design problem with direct shipment. Soft Comput. 2020;24(24):18499–18519. https://doi.org/10.1007/s00500-020-05085-2

 

  1. Mahmoodirad A, Niroomand S. Uncertain location-allocation decisions for a bi-objective two-stage supply chain network design problem with environmental impacts. Expert Syst. 2020;37(5):e12558. https://doi.org/10.1111/exsy.12558

 

  1. Jamshidi M, Saneie M, Mahmoodirad A, Hosseizadeh Lotfi F, Tohidi G. Uncertain RUS- SEL data envelopment analysis model: a case study in Iranian banks. J Intell Fuzzy Syst. 2019;37(2):2937-2951. https://doi.org/10.3233/JIFS-190067

 

  1. Jamshidi M, Sanei M, Mahmoodirad A, Tohidi G, Hosseinzade Lotfi F. Uncertain SBM data envelopment analysis model: a case study in Iranian banks. Int J Finance Econ. 2021;26(2):2674-2686. https://doi.org/10.1002/ijfe.1927

 

  1. Hossein-Jafari Z, Sanei M, Shirazi F. Fuzzy DEA approach for efficiency evaluation of airlines with undesirable outputs. Int J Data Envelopment Anal. 2021;9(3):1-18. https://doi.org/10.1007/s40747-022-00687-9

 

  1. Kiani M, Sanei M, Saleh H. A robust DEA model for evaluating the efficiency of airlines with undesirable outputs. Int J Ind Math. 2018;10(4):389-

 

  1. Salehi M, Kiani M, Sanei M. An integrated model of DEA and regression analysis for efficiency evaluation in the presence of undesirable outputs. J Intell Fuzzy Syst. 2017;33(3):1819-1830.

 

  1. Wen M, Zhang Q, Kang R, Yang Y. Some new ranking criteria in data envelopment analysis under uncertain environment. Comput Ind Eng. 2017;110:498-504. https://doi.org/10.1016/j.cie.2017.05.034

 

  1. Mohmmad Nejad Z, Ghaffari-Hadigheh A. A novel DEA model based on uncertainty theory. Ann Oper Res. 2018;264:367-389. https://doi.org/10.1007/s10479-017-2652-7

 

  1. Lio W, Liu B. Uncertain data envelopment analysis with imprecisely observed inputs and outputs. Fuzzy Optim Decis Mak. 2018;17:357-373. https://doi.org/10.1007/s10700-017-9276-x

 

  1. Pourmahmoud J,  Bagheri  Uncertain Malmquist productivity index:  an application to evaluate healthcare systems during COVID-19 pandemic. Socioecon Plann Sci. 2023;87:101522.  https://doi.org/10.1016/j.seps.2023.101522

 

  1. Mahmoodirad A, Jamalian A, Hajiaghaei- Keshteli M. An analysis of the sensitivity and stability of an uncertain SBM DEA model based on belief degree. Expert Syst Appl. 2024;255:124778. https://doi.org/10.1016/j.eswa.2024.124778

 

  1. Han Y, Geng Z. Energy efficiency hierarchy evaluation based on data envelopment analysis and its application in a petrochemical process. Chem Eng Technol. 2014;37(12):2085-2095. https://doi.org/10.1002/ceat.201300853

 

  1. Chung Y, Heshmati A. Measurement of environmentally sensitive productivity growth in Korean industries. J Clean Prod. 2015;104:380-391. https://doi.org/10.1016/j.jclepro.2014.06.030

 

  1. Bafrooei AA, Mina H, Ghaderi SF. A supplier selection problem in petrochemical industry using common weight data envelopment analysis with qualitative criteria. Int J Ind Syst Eng. 2014;18(3):404-417. https://doi.org/10.1504/IJISE.2014.065542

 

  1. Assaf SA, Hadidi LA, Hassanain MA, Rezq MF. Performance evaluation and benchmarking for maintenance decision making units at petrochemical corporation using a DEA model. Int J Adv Manuf Technol. 2015;76:1957-1967. https://doi.org/10.1007/s00170-014-6422-2

 

  1. Ramazankhani ME, Mostafaeipour A, Hosseininasab H, Fakhrzad MB. Feasibility of geothermal power assisted hydrogen production in Iran. Int J Hydrogen Energy. 2016;41(41):18351-18369. https://doi.org/10.1016/j.ijhydene.2016.08.150

 

  1. Gilsa CV, Lacerda DP, Camargo LFR, Souza IG, Cassel RA. Longitudinal evaluation of efficiency in a petrochemical company. Benchmarking Int J. 2017;24(7):1786-1813. https://doi.org/10.1108/BIJ-03-2016-0044

 

  1. Alidrisi H, Aydin ME, Bafail AO, Abdulal R, Karuvatt SA. Monitoring the performance of petrochemical organizations in Saudi Arabia using data envelopment analysis. 2019;7(6):519. https://doi.org/10.3390/math7060519

 

  1. Wang CN, Tsai HT, Ho TP, Nguyen VT, Huang YF. Multi-criteria decision making (MCDM) model for supplier evaluation and selection for oil production projects in Vietnam. 2020;8(2):134. https://doi.org/10.3390/pr8020134

 

  1. Keivani E, Abbaspour M, Abedi Z, Ahmadian M. Promotion of low-carbon economy through efficiency analysis: a case study of a petrochemical plant. Int J Environ Res. 2021;15:45-55. https://doi.org/10.1007/S41742-020-00282-1

 

  1. Mozaffari MR, Mohammadi S, Wanke PF, Cor- rea HL. Towards greener petrochemical production: two-stage network data envelopment analysis in a fully fuzzy environment in the presence of undesirable outputs. Expert Syst Appl. 2021;164:113903. https://doi.org/10.1016/j.eswa.2020.113903

 

  1. Izadikhah M, Farzipoor Saen R, Zare R, Shamsi M, Khanmohammadi Hezaveh M. Assessing the stability of suppliers using a multi-objective fuzzy voting data envelopment analysis model. Environ Dev Sustain. 2022;27(9):22005-22047. https://doi.org/10.1007/s10668-022-02376-6

 

  1. Bazargan A, Najafi SE, Lotfi FH, Fallah M, Edalatpanah SA. Presenting a productivity analysis model for Iran oil industries using Malmquist network analysis. Decis Mak Appl Manag Eng. 2023;6(2):251-292. https://doi.org/10.31181/dmame622023705

 

  1. Zhu Z, Zhang S. The impact of industrial- university-research collaborations on innovation output in China’s petroleum and petrochemical industry. Appl Math Nonlinear Sci. 2023;8(2):3393-3406. https://doi.org/10.2478/amns.2023.2.01137

 

  1. Gattoufi S, Amin GR, Emrouznejad A. A new inverse DEA method for merging banks. IMA J Manag Math. 2014;25(1):73-87. https://doi.org/10.1093/imaman/dps027

 

  1. Amin GR, Ibn Boamah M. A new inverse DEA cost efficiency model for estimating potential merger gains: a case of Canadian banks. Ann Oper Res. 2020;295(2):21-36. https://doi.org/10.1007/s10479-020-03667-9

 

  1. Zeinodin E, Ghobadi S. Merging DMUs based on of the idea inverse DEA. Iran J Optim. 2019;11(2):77-84.

 

  1. Soltanifar M, Ghiyasi M, Sharafi H. Inverse DEA- R models for merger analysis with negative data. IMA J Manag Math. 2023;34(3):491-510. https://doi.org/10.1093/imaman/dpac001

 

  1. Thomas P, Chan Y, Lehmkuhl L, Nixon W. Obnoxious-facility  location  and data- envelopment analysis: a combined distance-based formulation. Eur J Oper Res. 2002;141(3):495- 514. https://doi.org/10.1016/S0377-2217(01)00266-1

 

  1. Klimberg RK, Ratick SJ. Modeling data envelopment analysis (DEA) efficient location/allocation decisions. Comput Oper Res. 2008;35(2):457-474. https://doi.org/10.1016/j.cor.2006.03.010

 

  1. Moheb-Alizadeh H, Rasouli SM, Tavakkoli- Moghaddam R. The use of multi-criteria data envelopment analysis (MCDEA) for location–allocation problems in a fuzzy environment. Expert Syst Appl. 2011;38(5):5687-5695. https://doi.org/10.1016/j.eswa.2010.10.065

 

  1. Gal´an-Madruga D, Broomandi P, Satyanaga A, et al. A methodological framework for estimating ambient PM2.5 particulate matter concentrations in the UK. J Environ Sci. 2025;150:676-691. https://doi.org/10.1016/j.jes.2023.11.019

 

  1. Broomandi P, Satyanaga A, Bagheri M, et al. Extreme temperature events in Kazakhstan and their impacts on public health and energy demand. Glob Chall. 2025;9(2):2400207. https://doi.org/10.1002/gch2.202400207

 

  1. Broomandi P, Gal´an-Madruga D, Satyanaga A, et al. Variability of Middle East springtime dust events between 2011 and 2022. Air Qual Atmos Health. 2024;17(6):1341-1360. https://doi.org/10.1007/s11869-024-01510-9

 

  1. Broomandi P, Bagheri M, Fard AM, et al. Energy generation and carbon footprint under future projections (2022–2100) of central Asian temperature extremes. Glob Chall. 2025;9(5):2400356. https://doi.org/10.1002/gch2.202400356

 

  1. Chakraborty S, Saha AK. Selection of Fork- lift unit for transport handling using integrated MCDM under neutrosophic environment. Facta Univ Ser Mech Eng. 2024;235-256. https://doi.org/10.22190/FUME220620039C
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing