Proportional integral derivative plus control for nonlinear discrete-time state-dependent parameter: Industrial applications

In modern industrial automation, control of nonlinear systems with complex dynamics poses significant challenges, especially when dealing with discrete time models that incorporate state-dependent parameters. Addressing this need, this paper explores the Proportional-integral-derivative-plus (PID+) control approach applied to nonlinear systems characterized by state-dependent parameter (SDP) discrete-time models. Two industrial applications are demonstrated as follows: a bitumen tank system and a reeling/packing machine used in a bitumen membrane sheet production line. Both systems are modeled using discrete-time transfer functions with SDP structures. The present work extends the novel SDP-PID+ approach by formulating its control algorithms and integrating additional proportional and input compensators. This enhancement enables effective and intuitive handling of processes characterized by discrete-time transfer functions with any order and sampling time delay. The approach enables a straightforward implementation of the SDP-PID+ algorithm across two distinct industrial applications, considering their varying response times. The approach reduces the time required to design the SDP-PID+ method for the selected applications while also demonstrating enhanced robustness and performance. It effectively mitigates disturbances and accommodates nonlinearities, higher-order dynamics, and delays.
- Borase RP, Maghade DK, Sondkar SY, Pawar SN. A review of PID control, tuning methods, and applications. Int J Dyn Control. 2021;9:818–827. http://dx.doi.org/10.1007/s40435-020-00665-4
- Bennett S. Development of the PID controller. IEEE Control Syst Mag. 1993;13(6):58–62. https://doi.org/10.1109/37.248006
- Liu L, Lv W, Liu J, et al. Performance of active- quenching SPAD array based on the tri-state gates of FPGA and packaged with bare chip stacking. Sensors, 2023;23(9):4314. https://doi.org/10.3390/s23094314
- Vega P, Prada C, Aleixandre V. Self-tuning predictive PID controller. IEE Proc D: Control Theory Appl. 1991;138:303–312. http://dx.doi.org/10.1049/ip-d.1991.0041
- Porter B, Jones AH. Genetic tuning of digital PID controllers. Electron Lett. 1992;28(9):843–844. IET Digital Library.
- ˚Astr¨om KJ, H¨agglund T, Hang CC, Ho WK, Automatic tuning and adaptation for PID controllers: a survey. Control Eng Pract. 1993;1(4):699–714.http://dx.doi.org/10.1016/0967-0661(93)91394-
- Leva A. PID autotuning algorithm based on relay feedback. IEEE Proc D Control Theory Appl. 1993;140:328–338. http://dx.doi.org/10.1049/ip-d.1993.0044.
- Khodadadi H, Ghadiri H. Self-tuning PID con- troller design using fuzzy logic for half-car active suspension system. Int J Dyn Control. 2018;6(1):224–232. http://dx.doi.org/10.1007/s40435-016-0291-5.
- Loiseau J-J, Boudana M, Ladaci S. Fractional order PIDµ control design for a Class of cyber- physical systems with fractional order time-delay models. Int J Cyber Phys Syst. 2019;1(2):1–18. http://dx.doi.org/10.4018/IJCPS.2019070101.
- Hamed AR, Shaban EM, Darwish RR, Abdel Ghany AM. Design and implementation of discrete PID control applied to Bitumen tank based on a new approach of pole placement technique. J of Dyn Control. 2017;5(3):604–613. https://doi.org/10.1007/s40435-015-0199-
- Shaban EM, Sayed H, Abdelhamid A. A novel discrete PID+ controller applied to higher-order/time-delayed nonlinear systems with practical implementation. J Dyn Control. 2019;7(3):888–900. https://doi.org/10.1007/s40435-018-0472-5
- Sayed H, Shaban EM, Abdelhamid A. State dependent parameter PID+ control applied to a nonlinear manipulator arm. In: RAEMP 2019 International Conference on Recent Advances in Engineering Mathematics and Physics, Dec 24–26. Springer, Cairo, Egypt; 2019. http://dx.doi.org/10.1007/978-3-030-39847-71
- Hamed AR, Shaban EM, Abdelhaleem, Abdel Ghany AM. Industrial implementation of state dependent parameter PID+control for nonlinear time-delayed Bitumen tank system. Iran J Sci Technol - Trans Electr. 2022;46(11):743–751. https://doi.org/10.1007/s40998-022-00488-3
- Bashiri AH. Empirical study of robust/developed PID control for nonlinear time-delayed dynamical system in discrete time domain. Heliyon, 2024;10(9). http://dx.doi.org/10.1016/j.heliyon.2024.e11935
- Shaban EM, Hamed AR, Bassiuny AM, Abdelghany AM. On implementation of nonlinear PID+controller embedded on FPGA mod- ule for industrial system. Int J Dyn Contr. 2023;12(7):2331–2340. https://doi.org/10.1007/s40435-023-01338-8
- Taylor CJ, Young PC, Chotai A. State- space control system design based on non-minimal state-variable feedback: further generalization and unification results. Int J Control. 2000;73:1329–1345. http://dx.doi.org/10.1080/00207170010004698.
- Shaban EM, Hamed AR, Darwish RR, Abdel Ghany AM. New tuning approach of discrete PI/PID controller applied to Bitumen system based on non-minimal state-space formulation. In: ICCTA 2015, IEEE 25th International Conference, Oct 24–26, Alexandria, Egypt. IEEE Xplore Digital Library; 2015:52–57.
- Shaban EM, Ako S, Taylor CJ, Seward DW. Development of an automated verticality alignment system for a vibro-lance. Autom Constr. 2008;17(5):645–655. http://dx.doi.org/10.1016/j.autcon.2007.08.001
- Taylor CJ, Shaban EM, Stables MA, Ako S. Proportional-integral-plus control applications of state-dependent parameter models. Part I: J Syst Control Eng. 2007;221(7):1019–1031. https://doi.org/10.1243/09596518JSCE366
- Stables MA, James CJ. Non-linear Control of Ventilation Rate using State-dependent Parameter Models. Biosyst Eng. 2006;95(1):7–18, ISSN 1537–5110. https://doi.org/10.1016/j.biosystemseng.2006.05.015
- Taylor CJ, Robertson State-dependent control of a hydraulically actuated nuclear decommissioning robot. Control Eng Pract. 2013;21(12):1716–1725. http://dx.doi.org/10.1016/j.conengprac.2013.06.003
- Deepa SN, Sugumaran G. Design of PID controller for higher-order continuous systems using MPSO-based model formulation technique. Int J Electr Electron Eng. 2011;5(4):289–295. http://dx.doi.org/10.5281/zenodo.1056472
- Young PC. Stochastic, dynamic modelling and signal processing: Time variable and state dependent parameter estimation. In: Fitzgerald WJ, ed. Nonlinear and Nonstationary Signal Processing. Cambridge University Press; 2000. http://dx.doi.org/10.1016/B978-0-7506-7359-4.50015-9
- Shaban EM, James CJ, Chotai A. State dependent parameter, proportional-Integral-Plus (SDP-PIP) control of a Nonlinear Robot Digger Arm. In: UKACC Control 2004, University of Bath, Bath, UK, ID–059. 2004; http://dx.doi.org/10.1016/j.ifacol.2005.10.053
- Dixon R, Taylor CJ, Shaban EM. Comparison of classical and modern control applied to an excavator-arm. International Federation of Automatic Control 16th Triennial World Congress (IFAC-05), Prague, Czech Republic. 2005;38(1):589–594. http://dx.doi.org/10.3182/20050703-6-CZ- 1902.01368
- Shaban EM, Zied K, Taylor CJ, Seward DW. Nonlinear control system design for construction robots: estimation, partial linearization by feedback and state-dependent-parameter control, 22nd International Symposium on Automation and Robotics in Construction (ISARC-05), Fer- rara, Italy; 2005. https://doi.org/10.22260/ISARC2005/0041.
- Shaban EM, Nada AA. On linearization of nonlinear dynamic systems described by state- dependent-Parameter (SDP) Discrete-Time Model. In: 5th European Conference on Computational Mechanics (ECCM V), Barcelona, Spain. CIMNE - ECCM V Proceedings; 2014: 538–547.
- Young PC. Recursive Estimation and Time Series Analysis. Springer-Verlag; 1984. http://dx.doi.org/10.1007/978-3-642-21981-8
- Young PC. Simplified Refined Instrumental Variable (SRIV) estimation and True Digital Control (TDC): A tutorial introduction. 1st European Control Conference: Grenoble, France.1991;1295–1306.
- Janot A, Young PC, Gautier M. Identification and control of electro-mechanical systems using state dependent parameter estimation. Int J Control. 2017;90(4):643–660. http://dx.doi.org/10.1080/00207179.2016.1209565
- Taylor CJ, Pedregal DJ, Young PC, Tych W. Environmental time series analysis and forecasting with the Captain Toolbox. Environ Model Softw. 2007;22:797–814. http://dx.doi.org/10.1016/j.envsoft.2006.06.002
- Young PC, Taylor CJ, Tych W, Pedregal DJ. The Captain Toolbox. Center for Research on Environmental Systems and Statistics, Lancaster Uni- versity:UK. 2007. http://www.es.lancs.ac.uk/cres/captain
- He J-B, Wang Q-G, Lee T-H. PI/PID controller tuning via LQR approach. Chem Eng Sci. 2000;55(13):2429–2439. http://dx.doi.org/10.1016/S0009-2509(99)00512-6
- Das S, Pan I, Halder K, Das S, Gupta A. Optimum weight selection-based LQR formulation for the design of fractional-order PID controllers to handle a class of fractional-order systems. In: International Conference on Computer Communication and Informatics (ICCCI), Jan 4, IEEE; 2013: pp. 1–6; http://dx.doi.org/10.1109/ICCCI.2013.6466137
- Young PC, Behzadi MA, Wang CL, Chotai A. Direct digital and adaptive control by input-output, state-variable feedback pole assignment. Int J Control. 1987;46:1867–1881. http://dx.doi.org/10.1080/00207178708934274
- McCabe AP, Young PC, Chotai A, Taylor CJ. Proportional-Integral-Plus (PIP) control of non- linear systems. Syst Sci. 2000;26:25–46. http://dx.doi.org/10.1002/sys.10004
- ˚Astr¨om KJ, Wittenmark B. Computer Controlled Systems: Theory and Design. Prentice-Hall Information and System Sciences Series. 1984.
- Shaban EM. Deadbeat response of nonlinear systems described by discrete-time state dependent parameter using exact linearization by local coordinate transformation. J Am Sci. 2012;8(10):355–366. http://dx.doi.org/10.7537/j.issn.1545-1003.2012.10.053
- Shaban EM, Taylor CJ. Proportional-Integral- Plus control of a class of nonlinear systems using exact and partial linearization by feed- back. ICGST Int J Autom Control Syst Eng. 2006;6:55–70. http://dx.doi.org/10.1109/ICCCI.2013.6466137
- Hamed AR, Darwish RR, Shaban EM, Abdel Ghany AM. Hardware synthesis and dynamic modeling of Bitumen tank. J Am Sci. 2014;10(12):183–189. http://dx.doi.org/10.7537/j.issn.1545-1003.2014.12.021