Improving the performance of a chaotic nonlinear system of fractional-order brushless direct current electric motor using fractional-order sliding mode control

Brushless direct current (BLDC) motors are widely used in industrial applications due to their high efficiency and reliability. However, these motors exhibit inherent nonlinear and chaotic behavior, which can degrade performance and cause instability under certain operating conditions. This paper proposes a fractional-order sliding mode controller (FO-SMC) for robust chaos suppression and improved stability in BLDC motor systems to address this issue. The proposed controller leverages fractional-order calculus to enhance robustness, mitigate chattering, and provide better disturbance rejection than conventional control approaches. A comprehensive Lyapunov-based stability analysis is conducted to ensure finite-time convergence and system stability under parameter uncertainties and external disturbances. The effectiveness of the proposed FO-SMC is evaluated through extensive numerical simulations, comparing its performance against the integer-order sliding mode control method. The results demonstrate that FOS-MC significantly outperforms traditional controllers regarding settling time, overshoot reduction, and robustness to external perturbations. Additionally, the study explores the practical feasibility of implementing the proposed control strategy in real-time applications using Grunwald–Letnikov fractional derivatives, which enable efficient numerical approximation and digital implementation in field-programmable gate array-based and microcontroller-driven control systems. The findings confirm that FOS-MC provides a highly adaptive and resilient solution for stabilizing BLDC motors, making it a strong candidate for advanced industrial automation and high-performance motor control applications.
- Xia C. Permanent Magnet Brushless DC Motor Drives and Controls. John Wiley & Sons; 2012.
- Jabbar MA, Phyu HN, Liu Z, Bi C. Modeling and numerical simulation of a brushless permanent- magnet DC motor in dynamic conditions by time-stepping technique. IEEE Trans Ind Appl. 2004;40(3):763-770. https://doi.org/10.1109/TIA.2004.826330.
- Qi G. Energy cycle of brushless DC motor chaotic system. Appl Math Model. 2017;51:686-697. https://doi.org/10.1016/j.apm.2017.06.001.
- Utkin VI. Sliding Modes in Control and Optimization. Springer; 1992.
- DeCarlo RA, Zak SH, Matthews GP. Variable structure control of nonlinear multivariable systems: a tutorial. Proc IEEE. 1998;76(3):212-232. https://doi.org/10.1109/5.2070.
- Zhou P, Bai R, Zheng JM. Stabilization of a fractional-order Chaotic brushless DC Motor via a Single Input. Nonlinear Dyn. 2015;(82):519-525. https://doi.org/10.1007/s11071-015-2452-2.
- Li S, Li P, Zheng Z, Huang T. Fractional order sliding mode control for circulating current suppressing of MMC. Electr Eng. 2023;105(6):3791- 3800.https://doi.org/10.1007/s00202-023-01902-7.
- Petras I. Fractional-Order Nonlinear Systems: Modeling, Analysis, and Simulation. Springer;
- Hilfer R. Applications of Fractional Calculus in Physics. World Scientific Pub. Co.; 2000.
- Shahzad M. Chaos control in three dimensional cancer model by state space exact linearization based on Lie Algebra. Int J Eng Technol. 2016;4(33):1-11. https://doi.org/10.14419/ijet.v4i3.6129.
- Xue G, Lin F, Qin B. Adaptive neural network control of chaotic fractional order permanent magnet synchronous motors using backstep- ping technique. Front Phys. 2020;8:12. https://doi.org/10.3389/fphy.2020.
- Ge Z, Lin G. The complete, lag and anticipated synchronization of a BLDCM chaotic system. Chaos, Solitons & 2007;34:740-764. https://doi.org/10.1016/j.chaos.2006.05.057.
- Hemati N. Strange attractors in brushless DC motors. IEEE Trans Circuits Syst I Fundam Theory Appl. 1994;41(1):40-45. https://doi.org/10.1109/81.265867.
- Ye S, Chau KT. Chaotization of DC motors for industrial mixing. IEEE Trans Ind Electron. 2007;54:2024-2032. https://doi.org/10.1109/TIE.2007.903252.
- Reyes R, Cruz C, Nakano-Miyatake M, Perez- Meana H. Digital video watermarking in DWT domain using chaotic mixtures. IEEE Lat Am Trans. 2010;8:304-310. https://doi.org/10.1109/TLA.2010.5438444.
- Rajagopal K, Vaidhyanathan S, Karthikeyan A, Duraisamy P. Dynamic analysis and chaos sup- pression in a fractional order brushless DC motor. Electr Eng. 2016;99:721-733. https://doi.org/10.1007/978-3-319-32273-52.
- Sun LX, Lu S, Wen ZG, Li YF. Analysis of chaotic motion mechanism of permanent magnet synchro- nous motors. Electr Mach Control. 2019;23(3):97- 104.https://doi.org/10.16383/j.aemc.2019.3.001.
- Wu S, Zhang JA. Terminal sliding mode observer based robust backstepping sensorless speed control for interior permanent magnet synchronous motor. Int J Control Autom Syst. 2018;16(6):2743-2753. https://doi.org/10.1007/s12555-016-0782-x.
- Tang C, Bai L, Zhang G, Yang J, Li T. Robust guaranteed cost control of PMSM chaotic system with uncertain parameters. J Eng Sci Technol Rev. 2020;13(3):181-190. https://doi.org/10.25103/jestr.133.01.
- Yu X, Zhang C. Robust fractional-order PID control for chaotic systems. Nonlinear Dyn. 2021;103(2):1123-1140. http://dx.doi.org/10.2139/ssrn.5162779.
- Kumar R, Singh M. Comparative study of PID, FOPID, and sliding mode control for uncertain systems. IEEE Access. 2020;8: 76523-76535.https://doi.org/10.31763/ijrcs.v5i1.1764.
- Mendel JM. Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions. Springer; 2017. https://doi.org/10.1109/MCI.2007.357196.
- El-Bardini M, El-Nagar AM. Interval Type-2 Fuzzy Control Design for Uncertain Nonlinear Systems. ISA Trans. 2014; 53(3):732-743. https://doi.org/10.1016/j.isatra.2014.02.007.
- Huerta-Moro S, Taviz´on-Aldama JD, Tlelo- Cuautle E. FPGA implementation of sliding mode control and proportional-integral-derivative con- trollers for a DC–DC buck converter. 2024;12(10):184. https://doi.org/10.3390/technologies12100184.
- Roy P, Ray S, Bhattacharya S. Control of chaos in brushless DC motor design of adaptive controller following back-stepping method. In: Inter- national Conference on Control, Instrumentation, Energy & Communication (CIEC) ; 2014. https://doi.org/10.1109/CIEC.2014.107.
- Patra A, Chakrabarty K, Nag T. Control of Chaos in BLDC Motor Drive. In: Proceedings of IEEE, Applied Signal Processing Conference (AS- PCON); 2018. https://doi.org/10.1109/ASPCON.2018.8605733.
- Yaz M, Cetin E. Brushless Direct Current Motor Design and Analysis. COJ Electronics & Communications; 2021. https://doi.org/10.31031/COJEC.2021.05.000602.
- Hung JY, Gao W, Hung JC. Variable structure control: a survey. Procs of the IEEE. 1993;40(1):2-20. https://doi.org/10.1109/5.210201.
- Xue G, Lin F, Qin B. Adaptive neural network control of chaotic fractional order permanent magnet synchronous motors using backstep- ping technique. Front Phys. 2020;8:106. https://doi.org/10.3389/fphy.2020.00106.