AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/ijocta.1678
RESEARCH ARTICLE

Comparison of fractional order sliding mode controllers on robot manipulator

Mehmet Yavuz1,2* Muhammet Öztürk3 Burcu Yaşkıran1
Show Less
1 Department of Mathematics and Computer Sciences, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Türkiye
2 Department of Applied Mathematics and Informatics, Kyrgyz-Turkish Manas University, Bishkek 720038, Kyrgyzstan
3 Department of Aeronautical Engineering, Faculty of Aviation and Astronautics, Necmettin Erbakan University, 42140 Konya, Türkiye
Submitted: 11 September 2024 | Accepted: 21 January 2025 | Published: 4 April 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Challenging and time-consuming tasks performed by humans can today be performed faster and more efficiently by robot manipulators with the development of technology. Robotic manipulators are flexible, can fit in small spaces, and are very effective for tasks that require high precision. They are widely used in the production lines of factories (handling, assembly, welding, etc.) and in fields that require manpower, such as medicine and engineering. Since it is used in tasks that require precision, its control is also important. Sliding modal control (SMC), one of the robust control methods, is a control method used in nonlinear systems because it can be applied to unstable systems, is easy to design and, has high accuracy against parameter uncertainties. However, it produces an unstable control signal within a certain range and this discontinuous control signal causes cracking in the system, which causes damage to the system elements. Especially in recent years, one of the most recent and successful methods used to reduce the chattering effect, which is the biggest problem in the SMC approach, is the fractional order design of the sliding surface. In the fractional order SMC (FOSMC) method, the derivative expression in the sliding surface is defined using the system variable’s error to be controlled and the derivative of the error is computed fractionally. In this paper, Caputo FOSMC (CFOSMC), defined with 3 different sliding surfaces using the Caputo fractional operator, is compared with classical SMC for controlling a 2-degree of-freedom (2-DOF) robot manipulator. According to the results obtained from simulation comparisons, it is observed that approach 3 gives better results than the other two approaches and classical SMC in terms of overshoot, settling and error value for some derivative orders.

Keywords
Robot manipulator
Sliding surface
Sliding mode control
Caputo fractional order operator
Funding
None.
Conflict of interest
The authors declare that they have no conflict of interest regarding the publication of this article.
References
  1. Hern´andez-Guzm´an VM, Orrante-Sakanassi J. PID control of robot manipulators actuated by BLDC motors. Int J Control. 2021;94(2):267–276. https://doi.org/10.1080/00207179.2019.1590648

 

  1. Kuc T-Y., Han W-G. An adaptive PID learn- ing control of robot manipulators. Automatica, 2000;36(5):717–725. https://doi.org/10.1016/S0005-1098(99)00198-3

 

  1. Pan Y, Li X, Yu H. Efficient PID tracking con- trol of robotic manipulators driven by compli- ant actuators. IEEE Trans Control Syst Technol. 2019;27(2):915–922. https://doi.org/10.1109/TCST.2017.2783339

 

  1. Angel L, Viola J. Fractional order PID for track- ing control of a parallel robotic manipulator type delta. ISA Trans. 2018;79:172–188. https://doi.org/10.1016/j.isatra.2018.04.010

 

  1. Sharma R, Gaur P, Mittal AP. Performance anal- ysis of two-degree of freedom fractional order PID controllers for robotic manipulator with payload. ISA Trans. 2015;58:279–291. https://doi.org/10.1016/j.isatra.2015.03.013

 

  1. Baek J, Jin M, Han S. A New Adaptive Sliding- Mode Control Scheme for Application to Ro- bot Manipulators. IEEE Trans Ind Electron. 2016;63(6):3628–3637. https://doi.org/10.1109/TIE.2016.2522386

 

  1. Kapoor N, Ohri J. Sliding Mode Control (SMC) of Robot Manipulator via Intelligent Controllers. J Inst Eng India Ser B. 2017;98(1):83–98. https://doi.org/10.1007/s40031-016-0216-x

 

  1. Zhao Y, Sheng Y, Liu X. A Novel Finite Time Sliding Mode Control for Robotic Manipulators. IFAC Proc Vol. 2014;47(3):7336–7341. https://doi.org/10.3182/20140824-6-ZA-1003.00135

 

  1. Dumlu A. Practical Position Tracking Control of a Robotic Manipulator Based on Fractional Order Sliding Mode Controller. Elektr Ir Elektrotech. 2018;24(5):19–25. https://doi.org/10.5755/j01.eie.24.5.21838

 

  1. Rahmani M, Rahman MH. Adaptive Neural Net- work Fast Fractional Sliding Mode Control of a 7-DOF Exoskeleton Robot. Int J Control Autom Syst. 2020;18(1):124–133. https://doi.org/10.1007/s12555-019-0155-1

 

  1. Sachan S, Swarnkar P. Intelligent Fractional Or- der Sliding Mode Based Control for Surgical Ro- bot Manipulator. Electronics, 2023;12(3):729. https://doi.org/10.3390/electronics12030729

 

  1. Zhang S, Li Z, Wang H, Xiong T. Fractional Or- der Sliding Mode Control Based on Single Param- eter Adaptive Law for Nano-Positioning of Piezo- electric Actuators. IET Control Theory Appl. 2021;15(10):1422–1437. https://doi.org/10.1049/cth2.12132

 

  1. Shah MZ, Samar R, Bhatti AI. Guidance of Air Vehicles: A Sliding Mode Approach. IEEE Trans Control Syst Technol. 2015;23(1):231–244. https://doi.org/10.1109/TCST.2014.2322773

 

  1. Zhao J, Jiang B, Shi P, Liu H. Adaptive Dy- namic Sliding Mode Control for Near Space Vehi- cles Under Actuator Faults. Circ Syst Signal Pro- cess. 2013;32(5):2281–2296. https://doi.org/10.1007/s00034-013-9572-9

 

  1. Dokumaci K, Aydemir MT, Salamci MU. Mod- eling, PID control and simulation of a rocket launcher system. 2014 16th International Power Electronics and Motion Control Conference and Exposition, , 2014;1283–1288. Antalya, Turkey. https://doi.org/10.1109/EPEPEMC.2014.6980689

 

  1. Muliadi J, Kusumoputro B. Neural Network Con- trol System of UAV Altitude Dynamics and Its Comparison with the PID Control System. J Adv Transp. 2018;2018(1):3823201. https://doi.org/10.1155/2018/3823201

 

  1. Alagoz BB, Ates A, Yeroglu C. Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control. Mechatronics 2013;23(7):789–797. https://doi.org/10.1016/j.mechatronics.2013.05.001

 

  1. Han J, Yu S, Yi S. Adaptive control for robust air flow management in an automotive fuel cell system. Appl Energy. 2017;190:73–83. https://doi.org/10.1016/j.apenergy.2016.12.115

 

  1. Chen K, Astolfi A. Adaptive Control for Systems With Time-Varying Parameters. IEEE Trans Au- tom Control. 2021;66(5):1986–2001. https://doi.org/10.1109/TAC.2020.3046141

 

  1. Liu Z, Han Z, Zhao Z, He W. Modeling and adaptive control for a spatial flexible spacecraft with unknown actuator failures. Sci China Inf Sci. 2021;64(5):152208. https://doi.org/10.1007/s11432-020-3109-x

 

  1. Tutsoy O, Barkana DE. Model free adaptive control of the under-actuated robot manipu- lator with the chaotic dynamics. ISA Trans. 2021;118:106–115. https://doi.org/10.1016/j.isatra.2021.02.006

 

  1. Joshua Robert J, Senthil Kumar P, Tushar Nair S, Sharne Moni DH, Swarneswar B. Fuzzy control of active suspension system based on quarter car model. Mater Today Proc. 2022;66:902–908. https://doi.org/10.1016/j.matpr.2022.04.575

 

  1. Kasruddin Nasir AN, Ahmad MA, Tokhi MO. Hybrid spiral-bacterial foraging algorithm for a fuzzy control design of a flexible manip- ulator. J Low Freq Noise Vibr Act Control 2022;41(1):340–358. https://doi.org/10.1177/14613484211035646

 

  1. O¨ ztu¨rk M, O¨ zkol I˙. Comparison of modified Karnik-Mendel algorithm-based interval type-2 ANFIS and type-1 ANFIS. Aircr Eng Aerosp Technol. 2021;93(10):1526–1532. https://doi.org/10.1108/AEAT-11-2020-0268

 

  1. Jha D, Ahmed A, Kumar S, Roy D. Fuzzy-PID and interpolation: a novel synergetic approach to process control. Int J Optim Control Theor Appl. (IJOCTA) 2024;14(4):355–364. https://doi.org/10.11121/ijocta.1483

 

  1. Ammar MB, Chaabene M, Chtourou Z. Artificial Neural Network based control for PV/T panel to track optimum thermal and electrical power. En- ergy Convers Manag. 2013;65:372–380. https://doi.org/10.1016/j.enconman.2012.08.003

 

  1. Kurt R. Control of system parameters by estimat- ing screw withdrawal strength values of particle- boards using artificial neural network-based sta- tistical control charts. J Wood Sci. 2022;68(1):64. https://doi.org/10.1186/s10086-022-02065-y

 

  1. Furat M, Eker I˙. Experimental Evalua- tion of Sliding-Mode Control Techniques. C¸ ukurova Univ Mu¨hendislik Mimarlık Fak Derg. 2016;27(1):23–37.

 

  1. Herrera M, Camacho O, Leiva H, Smith C. An ap- proach of dynamic sliding mode control for chemi- cal processes. J Process Control. 2020;85:112–120. https://doi.org/10.1016/j.jprocont.2019.11.008

 

  1. Lee H, Utkin VI. Chattering suppression methods in sliding mode control systems. Annu Rev Control. 2007;31(2):179–188. https://doi.org/10.1016/j.arcontrol.2007.08.001

 

  1. Pisano A, Usai E. Sliding mode control: A survey with applications in math. Math Comput Simul. 2011;81(5):954–979. https://doi.org/10.1016/j.matcom.2010.10.003

 

  1. Gokyildirim A, Calgan  H,  Demirtas  Fractional-Order sliding mode control of a 4D memristive chaotic system. J Vib Control. 2024;30(7–8):1604–1620. https://doi.org/10.1177/10775463231166187

 

  1. Hua C, Chen J, Guan X. Fractional-order slid- ing mode control of uncertain QUAVs with time-varying state constraints. Nonlinear Dyn. 2019;95(2):1347–1360. https://doi.org/10.1007/s11071-018-4632-0

 

  1. Saif A-WA, Gaufan KB, El-Ferik S, Al-Dhaifallah M. Fractional Order Sliding Mode Control of Quadrotor Based on Fractional Order Model. IEEE Access, 2023;11:79823–79837. https://doi.org/10.1109/ACCESS.2023.3296644

 

  1. Wang J, Shao C, Chen Y-Q. Fractional order slid- ing mode control via disturbance observer for a class of fractional order systems with mismatched disturbance,. Mechatronics, 2018;53:8–19. https://doi.org/10.1016/j.mechatronics.2018.05.006

 

  1. Moshiri B, Jalili-Kharaajoo M, Besharati F. Ap- plication of fuzzy sliding mode based on genetic algorithms to control of robotic manipulators. EFTA 2003. 2003 IEEE Conference on Emerging Technologies and Factory Automation. Proceed- ings (Cat. No.03TH8696) 2003;2:169–172 vol.2. Lisbon, Portugal. https://doi.org/10.1109/ETFA.2003.1248691

 

  1. Utkin VI. Variable Structure Systems with Sliding Modes. IEEE Trans Autom Control. 1977;22(2):212–222.

 

  1. Utkin VI. Sliding Modes in Problems of Mathe- matical Programming. In: Sliding Modes in Con- trol and Optimization. Springer; 1992: 223–236. https://doi.org/10.1007/978-3-642-84379-215

 

  1. Panchade VM, Chile RH, Patre BM. A survey on sliding mode control strategies for induction mo- tors. Annu Rev Control. 2013;37(2):289–307. https://doi.org/10.1016/j.arcontrol.2013.09.008

 

  1. Tan S-C, Lai Y-M, Tse C-K. Sliding Mode Con- trol of Switching Power Converters: Techniques and Implementation. CRC Press; 2017. https://doi.org/10.1201/9781315217796

 

  1. Yan H, Zhang H, Zhan X, Wang Y, Chen S, Yang F. Event-Triggered Sliding Mode Con- trol of Switched Neural Networks With Mode- Dependent Average Dwell Time. IEEE Trans Syst Man Cybern Syst. 2021;51(2):1233–1243. https://doi.org/10.1109/TSMC.2019.2894984

 

  1. Yau H-T, Chen C-L. Chattering-free fuzzy sliding-mode control strategy for uncertain chaotic systems. Chaos, Solitons & Fractals, 2006;30(3):709–718. https://doi.org/10.1016/j.chaos.2006.03.077

 

  1. Basci A, Can K, Orman K, Derdiyok A. Trajectory Tracking Control of a Four Rotor Un- manned Aerial Vehicle Based on Continuous Sliding Mode Controller. Elektr Ir Elektrotech. 2017;23(3):12–19. https://doi.org/10.5755/j01.eie.23.3.18325

 

  1. Haridas V, Vivek A. Longitudinal Guidance of Unmanned Aerial Vehicle Using Integral Sliding Mode Control. Procedia Technol. 2016;25:36–43. https://doi.org/10.1016/j.protcy.2016.08.078

 

  1. Barambones O. Sliding Mode Control Strategy for Wind Turbine Power Maximization. Energies, 2012;5(7):2310–2330. https://doi.org/10.3390/en5072310

 

  1. Firouzi M, Nasiri M, Mobayen S, Ghareh- petian GB. Sliding Mode Controller-Based BFCL for Fault Ride-Through Performance Enhance- ment of DFIG-Based Wind Turbines. Complexity, 2020;2020(1):1259539. https://doi.org/10.1155/2020/1259539

 

  1. Arisoy A, Bayrakceken MK, Basturk S, Gokasan M, Bogosyan OS. High order sliding mode control of a space robot manipulator. Proceedings of 5th International Conference on Recent Advances in Space Technologies-RAST2011, 2011;833–838. https://doi.org/10.1109/RAST.2011.5966960

 

  1. Cai X, Liu F. Numerical simulation of the fractional-order control system. J Appl Math Comput. 2007;23(1):229–241. https://doi.org/10.1007/BF02831971

 

  1. Ma C, Hori Y. Fractional-order control: The- ory and applications in motion control [Past and present]. IEEE Ind Electron Mag. 2007;1(4):6–16. https://doi.org/10.1109/MIE.2007.909703

 

  1. Petr´aˇs I. Tuning and implementation methods for fractional-order controllers. Fract Calc Appl Anal. 2012;15(2):282–303. https://doi.org/10.2478/s13540-012-0021-4

 

  1. Naik PA, Owolabi KM, Yavuz M, Zu J. Chaotic dynamics of a fractional order HIV-1 model in- volving AIDS-related cancer cells. Chaos, Solitons & Fractals, 2020;140:110272. https://doi.org/10.1016/j.chaos.2020.110272

 

  1. Yavuz M, Bonyah E. New approaches to the frac- tional dynamics of schistosomiasis disease model. Phys A Stat Mech Its Appl. 2019;525:373–393. https://doi.org/10.1016/j.physa.2019.03.069

 

  1. Bhatter S, Kumawat S, Bhatia B, Purohit SD. Analysis of COVID-19 epidemic with in- tervention impacts by a fractional operator. Int J Optim Control Theor Appl. (IJOCTA) 2024;14(3):261–275. https://doi.org/10.11121/ijocta.1515

 

  1. Yavuz M, Ya¸skıran B. Approximate-analytical solutions of cable equation using conformable fractional operator. New Trends Math Sci.2017;5(4):209–219.

 

  1. Yavuz M, Ya¸skıran B. Homotopy methods for fractional linear/nonlinear differential equations with a local derivative operator. Balıkesir Univ Fen Bilim Enst Derg. 2018;20(3):75–89. https://doi.org/10.25092/baunfbed.476608

 

  1. Y´epez-Mart´ınez H, G´omez-Aguilar    A new modified definition of Caputo–Fabrizio fractional-order derivative and their applica- tions to the Multi Step Homotopy Analysis Method (MHAM). J Comput Appl Math. 2019;346:247–260. https://doi.org/10.1016/j.cam.2018.07.023

 

  1. Zhao C, Xue D, Chen Y. A fractional order PID tuning algorithm for a class of fractional order plants. IEEE Int Conf Mechatron Autom. 2005;2005:1, 216-221 Vol. 1.https://doi.org/doi: 10.1109/ICMA.2005.1626550

 

  1. Zahraoui Y, Zaihidee FM, Kermadi M, et al. Fractional Order Sliding Mode Controller Based on Supervised Machine Learning Tech- niques for Speed Control of PMSM. Mathematics, 2023;11(6):1457. https://doi.org/10.3390/math11061457

 

  1. Yuvapriya T, Lakshmi P. Simulation study on ride comfort enhancement for a heavy duty vehi- cle with fractional order sliding mode controller. SN Appl Sci. 2020;2(9):1478. https://doi.org/10.1007/s42452-020-03263-3

 

  1. Nafiz Musarrat M, Fekih A. Fractional Order SMC Design to Enhance the Dynamic Stability of PV Systems During Unexpected Network Events. 2022 American Control Conference (ACC), 2022;2553–2558. https://doi.org/10.23919/ACC53348.2022.9867426

 

  1. Beniss MA, El Moussaoui H, Lamhamdi T, El Markhi H. Comparative Study Between FOSMC and SMC Controllers for DFIG Under the Real Wind Profile of Asilah-Morocco City. In: Bennani S, Lakhrissi Y, Khaissidi G, Mansouri A, Kham- lichi Y, eds. WITS 2020. Springer; 2022: 673–685. https://doi.org/10.1007/978-981-33-6893-462

 

  1. Basilio JCC, Oliveira TR, Ribeiro JGT, Cunha A. Evaluation of Fractional-Order Sliding Mode Control Applied to an Energy Harvesting Sys- tem. 2022 16th International Workshop on Vari- able Structure Systems (VSS), 2022; 243–248. https://doi.org/10.1109/VSS57184.2022.9902105

 

  1. Yavuz M, O¨ ztu¨rk M, Ya¸skıran B. Sliding Mode Controller of Fractional Order for a Robot Ma- nipulator Control. In: Jha BK, Jha N, Brahma J, Yavuz M, eds. Computational Modeling and Sustainable Energy. ICCMSE 2023. Innovations in Sustainable Technologies and Computing. Springer; 2025. https://doi.org/10.1007/978-981-97-6794-612

 

  1. Belhocine M, Hamerlain M, Bouyoucef K. Ro- bot control using a sliding mode.Proceedings of 12th IEEE International Symposium on Intelli- gent Control, 1997;361–366. Istanbul, Turkey. https://doi.org/10.1109/ISIC.1997.626506

 

  1. Utkin VI. Sliding mode control design principlesand applications to electric drives. IEEE Trans Ind Electron. 1993;40(1):23–36.

 

  1. Giap V, Vu H, Nguyen Q, Huang S-C. Chattering- Free Sliding Mode Control-Based Disturbance Observer for Mems Gyroscope System. Microsyst Technol. 2022;28(8):1867–1877.

 

  1. Podlubny I, ed. Chapter 2—Fractional Deriva- tives and Integrals. In: Mathematics in Science and Engineering. Elsevier; 1999: 41–119. https://doi.org/10.1016/S0076-5392(99)80021-6

 

  1. Zhang X, Xu W, Lu W. Fractional-order iter- ative sliding mode control based on the neural network for manipulator. Math Probl Eng. 2021;2021(1):9996719. https://doi.org/10.1155/2021/9996719

 

  1. Islam MR, Rahmani M, Rahman MH. A novel exoskeleton with fractional sliding mode control for upper limb rehabilitation. Robotica, 2020;38(11):2099-2120. https://doi.org/10.1017/S0263574719001851
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing