AccScience Publishing / IJOCTA / Online First / DOI: 10.36922/ijocta.1676
RESEARCH ARTICLE

Multiple item economic lot sizing problem with inventory dependent demand

Duru Balpınarlı1 Mehmet Önal1*
Show Less
1 Department of Industrial Engineering, Özyeğin University, Çekmeköy, İstanbul, Türkiye
Submitted: 5 September 2024 | Accepted: 5 February 2025 | Published: 20 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

We consider a multiple item Economic Lot Sizing problem where the demands for items depend on their stock quantities. The objective is to find a production plan such that the resulting stock levels (and hence demands) maximize total profit over a finite planning horizon. The single item version of this problem has been studied in the literature, and a polynomial time algorithm has been proposed when there are no bounds on production. It has also been proven that the single item version is NP-hard even when there are constant (i.e., time-invariant) finite capacities on production. We extend this single item model by considering multiple items and production capacities. We propose a Lagrangian relaxation method to find an initial solution to the problem. This solution is a hybrid solution obtained by combining two distinct solutions generated in the process of solving the Lagrangian dual problem. Starting with this initial solution, we then implement a Tabu Search algorithm to find better solutions. The performance of the proposed solution method is compared with the performance of a standard commercial software that works on a mixed integer programming formulation of the problem. We show that our solution approach finds better solutions within a predetermined time limit in general.

Keywords
Economic lot-sizing
Inventory dependent demand
Lagrangian relaxation
Tabu search algorithm
Funding
The work was supported by the Scientific and National Research Council of Turkey (T¨UB˙ITAK) under grant no. 119M278.
Conflict of interest
The authors declare that they have no conflict of interest regarding the publication of this article.
References
  1. Koschat M A. Store inventory can affect de- mand: Empirical evidence from magazine retail- ing. J Retail. 2008;84(2):165-179.

 

  1. Chuang C-H, Zhao Y. Demand stimulation in finished-goods inventory management: Empiri- cal evidence from general motors dealerships. Int J Prod Econ. 2019;208:208-220.

 

  1. Balakrishnan A, Pangburn M S, Stavrulaki E. Stack them high, let ‘em fly: Lot-sizing policies when inventories stimulate demand. Manag Sci. 2004;50(5):630-644.

 

  1. O¨ nal M, Albey E. Economic lot sizing problem with inventory dependent demand. Optim Lett. 2020;14:2087–2106.

 

  1. Kunreuther H, Richard J F. Optimal pricing and inventory decisions for non-seasonal items. Econometrica. 1971;39:173-175.

 

  1. Rosenberg D. Optimal price-inventory decisions: Profit vs. roii. IIE txn.1991;21(1):17-22.

 

  1. Burwell T H, Dave D S, Fitzpatrick K E, Roy M R. An inventory model with planned shortage and price dependent demand. Decision Sciences, 1991;22(5):1187-1191.

 

  1. Kumari M, De P K. An eoq model for deterio- rating items analyzing retailer’s optimal strategy under trade credit and return policy with non- linear demand and resalable returns. An Inter- national Journal of Optimization and Control: Theories and Applications. 2022;2(1):73-82.

 

  1. Urban T L. Inventory models with the demand rate dependent on stock and shortage levels. Int J Prod Econ. 1995;40(1):21-28.

 

  1. Soni H, Shah N H. Optimal ordering policy for stock-dependent demandunder progressive pay- ment scheme. European Journal of Operational Research. 2008;185:91-100.

 

  1. Pando V, San-Jos´e L A, Garc´ıa-Laguna J, Si- cilia J. An economic lot-size model with non- linear holding cost hinging on time and quantity. International Journal of Production Economics. 2013;145(1):294-303.

 

  1. Giri B C, Pal S, Chaudhuri K S. An in- ventory model for deteriorating items with stock-dependent demand rate. Eur J Oper Res. 1996;95:604-610.

 

  1. Teng J-T, Krommyda I-P, Skouri K, Lou K-R. A comprehensive extension of optimal order- ing policy for stock-dependent demand under progressive payment scheme. Eur J Oper Res. 2011;215:97-104.

 

  1. Pervin M, Roy S K, Weber G W. Multi-item deteriorating two-echelon inventory model with price- and stock-dependent demand: A trade- credit policy. J Ind Manag Optim. 2019;15:1345-

 

  1. Zhang S, Cao L, Lu Z. An eoq inventory model for deteriorating items with controllable deterio- ration rate under stock-dependent demand rate and non-linear holding cost. J Ind Manag Optim. 2022;18:4231-4263.

 

  1. Urban T L., Baker R C. Optimal ordering and pricing policies in a single-period environment with multivariate demand and markdowns. Eur J Oper Res. 1997;103:573-583.

 

  1. Datta T K, Paul K. An inventory system with stock dependent, price sensitive demand rates. Prod Plan Cont. 2001;12:13-20.

 

  1. Teng, J T, Chang C. Economic production quantity models for deteriorating items with price- and stock-dependent demand. Computers and Operations Research. 2005;32:297-308.

 

  1. Lu L, Zhang J, Tang W. Optimal dynamic pricing and replenishment policy for perishable items with inventory-level-dependent demand. Int J Syst Sci. 2016;47(6):1480-1494.

 

  1. Hsieh T-P, Dye C-Y. Optimal dynamic pricing for deteriorating items with reference price ef- fects when inventories stimulate demand. Eur J Oper Res. 2017;262(1):136-150.

 

  1. Tiwari S, Jaggi C K, Bhunia A K, Shaikh A A, Goh M. Two-warehouse inventory model for non-instantaneous deteriorating items with stock-dependent demand and inflation using particle swarm optimization. Ann Oper Res. 2017;254:401–423.

 

  1. Pervin M, Roy S K, Weber G W. Deteriorat- ing inventory with preservation technology un- der price- and stock-sensitive demand. J Ind Manag Optim. 2020;16:1585-1612.

 

  1. Feng L, Chan Y-L, C´ardenas-Barr´on L E. Pric- ing and lot-sizing polices for perishable goods when the demand depends on selling price, dis- played stocks, and expiration date. International Journal of Production Economics. 2017;185:11- 20.

 

  1. Wu J, Teng J-T, Chan Y-L. Inventory policies for perishable products with expiration dates and advance-cash-credit payment schemes. Int J Syst Sci: Oper Logist. 2018;5:310-326.

 

  1. Li R, Teng, J-T. Pricing and lot-sizing deci- sions for perishable goods when demand depends on selling price, reference price, product fresh- ness, and displayed stocks. Eur J Oper Res. 2018;270:1099-1108.

 

  1. Sebatjane M, Adetunji O. Optimal lot-sizing and shipment decisions in a three-echelon supply chain for growing items with inventory level- and expiration date-dependent demand. Appl Math Model. 2021;90:1204-1225.

 

  1. Shi R, You C. Joint dynamic pricing and freshness-keeping effort strategy for perish- able products with price-, freshness-, and stock-dependent demand. J Ind Manag Optim. 2023;19:6572-6592.

 

  1. Wagner H M, Whitin T M. Dynamic version of the economic lot size model. Manag Sci. 1958;5:89-96.

 

  1. Florian M, Klein M. Deterministic production planning with concave costs and capacity con- straints. Manag Sci. 1971;18:12-20.

 

  1. Bitran G R, Yanasse H H. Computational com- plexity of the capacitated lot sizing problem. Manag Sci. 1982;18:1174-1186.

 

  1. Hoesel van CP M, Wagelmans A. An o(t)3 algorithm for the economic lot-sizing prob- lem with constant capacities. Manag Sci. 1996;42:142–150.

 

  1. Fan J, Ou J. On dynamic lot sizing with bounded inventory for a perishable product. Omega. 2023;119:102895.

 

  1. O¨ nal M, van den Heuvel W, Dereli M M, Albey E. Economic lot sizing problem with tank sched- uling. Eur J Oper Res. 2023;308(1):166-182.

 

  1. Dziuba D, Almeder C. New construction heuris- tic for capacitated lot sizing problems. Eur J Oper Res. 2023;311(3):906-920.

 

  1. Absi N, van den Heuvel W, Dauz`ere-P´er`es S. Complexity analysis of integrated dynamic lot sizing and maintenance planning problems. Eur J Oper Res. 2024;318(1):100-109.

 

  1. Akbalik A, Gicquel C, Penz B, Rapine C. Lot siz- ing with capacity adjustment using on-site green and grid electricity. Omega. 2025;133:103260.

 

  1. Kunreuther H, Schrage L. Joint pricing and inventory decisions for constant priced items. Manag Sci. 1973;7:732-738.

 

  1. Heuvel van den W, Wagelmans AP M. A poly- nomial time algorithm for a deterministic joint pricing and inventory model. Eur J Oper Res. 2006;170(2):463-480.

 

  1. Geunes J, Romeijn H, Taaffe K. Requirements planning with pricing and order selection flexi- bility. Operations Research. 2006;54:394-401.

 

  1. Geunes J, Merzifonluoglu Y, Romeijn H. Capac- itated procurement planning with price-sensitive demand and general concave-revenue functions. Eur J Oper Res. 2009;54:390-405.

 

  1. Terzi M, Yalaoui A, Ouazene Y, Yalaoui F. In- tegrated lot-sizing and pricing problem under cross-price demand model. IFAC-PapersOnLine. 2022;55(10):2372-2377. 10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022.

 

  1. O¨ nal M, Romeijn H E. Two-echelon require- ments planning with pricing decisions. J Ind Manag Optim. 2009;5(4):767-781.

 

  1. O¨ nal M, Romeijn, H E. Multi-item capacitated lot-sizing problems with setup times and pricing decisions. Wiley InterScience. 2010;57(2):172-

 

  1. Wu X, Gong Y Y, Xu H, Chu C, Zhang J. Dynamic lot-sizing models with pricing for new Eur J Oper Res. 2017;260:81-92.

 

  1. Couzon P, Ouazene Y, Yalaoui F. Joint opti- mization of dynamic pricing and lot-sizing de- cisions with nonlinear demands: Theoretical and computational analysis. Comput Oper Res. 2020;115:104862.

 

  1. Fisher M L. The lagrangian relaxation method for solving integer programming problems. Manag Sci. 1981;27:1861-1871.

 

  1. Absi N, Kedad-Sidhoum S. The multi-item ca- pacitated lot-sizing problem with safety stocks and demand shortage costs. Comput Oper Res. 2009;36:2926-2936.

 

  1. Zhang Z-H, Jiang H, Pan X. A lagrangian re- laxation based approach for the capacitated lot sizing problem in closed-loop supply chain. Int J Prod Econ. 2012;140(1):249-255.

 

  1. Diaby M, Bahl H C, Karwan M H, Zionts S. A la- grangian relaxation approach for very-large-scale capacitated lot-sizing. Manag Sci. 2012;38:1329-1340.

 

  1. Su¨ral H, Denizel M, Wassenhove LN V. La-grangean relaxation based heuristics for lot sizing with setup times. Eur J Oper Res. 2009;194(1):51-63.

 

  1. Ali S, Gupta O K. Lagrangian relaxation proce- dure for the capacitated dynamic lot sizing prob- lem. In 13th AIMS Int J Manag. 2005;9:51–63.

 

  1. Cai J, Huang Y, Diao C, Jin Z. Joint opti- mization of empty container repositioning and inventory control applying dynamic program- ming and simulated annealing. Appl Soft Com- put. 2024;167:112452.

 

  1. Xie J, Gao L, Li X, Gui L. A hybrid ge- netic tabu search algorithm for distributed job- shop scheduling problems. Swarm Evol Comput. 2024;90:101670.

 

  1. Yao Y, Gui L, Li X, Gao L. Tabu search based on novel neighborhood structures for solving job shop scheduling problem integrating finite transportation resources. Robot Comput-Integr Manuf. 2024;89:102782.

 

  1. Qian L, Melachrinoudis E. An integrated neural combinatorial tabu search for optimizing school bus scheduling with bell time. Transp Res Part C Emerg. 2024;164:104662.

 

  1. Xiao D, Li J, Zhang Z, Gu Z, Fu Y, Niu J. Opti- mization of personnel evacuation routes for sud- den nuclear accidents based on hybrid genetic- grey wolf optimizer algorithm. Nucl Eng Tech- nol. 2024;103223.

 

  1. Rosati R M, Schaerf A. Multi-neighborhood sim- ulated annealing for the capacitated dispersion problem. Expert Syst Appl. 2024;255:124484.

 

  1. Niroumandrad N, Lahrichi N, Lodi A. Learning tabu search algorithms: A scheduling applica- tion. Comput Oper Res. 2024;170:106751.

 

  1. Ban H-B, Pham D-H. A multi-population multi- tasking tabu search with variable neighborhood search algorithm to solve post-disaster clustered repairman problem with priorities. Appl Soft Comput. 2025;170:112655.

 

  1. Hao L, Zou Z, Liang X. Solving multi-objective energy-saving flexible job shop scheduling prob- lem by hybrid search genetic algorithm. Comput Ind Eng. 2025;110829.

 

  1. Shi K, Yang L, Wu Z, Jiang B, Gao Q. Multi-robot dynamic path planning with pri- ority based on simulated annealing. J Franklin Inst. 2025;362(1):107396.

 

  1. Chen X, Li J, Wang Z, Li J, Gao K. A genetic programming based cooperative evolutionary al- gorithm for flexible job shop with crane trans- portation and setup times. Appl Soft Comput. 2025;169:112614.

 

  1. Dong X, Ma L, Zhao X, Shan Y, Wang J, Xu Z. Hybrid genetic algorithm with wiener process for multi-scale colored balanced traveling salesman problem. Expert Syst Appl. 2025;262:125610.

 

  1. Wang H-K, Yang T-Y, Wang Y-H, Wu C-L. Hybrid dispatching and genetic algorithm for the surface mount technology scheduling prob- lem in semiconductor factories. Int J Prod Econ. 2025;280:109500.

 

  1. Zhang H, Lv S, Xin D, Jin H. A genetic algorithm enhanced with neighborhood structure for general flexible job shop scheduling with paral- lel batch processing machine. Expert Syst Appl. 2025;265:125888.

 

  1. Moreno F, Forcael E, Orozco F, Baesler F, Ag- das D. Fixed start method for repetitive project scheduling with simulated annealing. Heliyon. 2025;11(2):41741.

 

  1. Sharma H, Galv´an E, Mooney P. A parallel ge- netic algorithm for multi-criteria path routing on complex real-world road networks. Appl Soft Comput. 2025;170:112559.

 

  1. Chandrashekhar M, Dhal P. Multi-objective eco- nomic and emission dispatch problems using hy- brid honey bee simulated annealing. Meas: Sens. 2024;32:101065.

 

  1. Bektur G, Aslan H K. Artificial bee colony al- gorithm for operating room scheduling problem with dedicated/flexible resources and coopera- tive operations. Int J Optim Control: Theor Appl (IJOCTA). 2024;14(3):193–207.

 

  1. O¨ zdamar L, Barbaroso˘glu G. Hybrid heuristics for the multi-stage capacitated lot sizing and loading problem. J Oper Res Soc. 1999;50:810- 825.

 

  1. Ajmera R. A review of applications of ge- netic algorithms in lot sizing. J Intell Manuf. 2010;21:575–590.

 

  1. Gopalakrishnan M, Ding K, Bourjolly J-M, Mo- han S. A tabu-search heuristic for the capaci- tated lot-sizing problem with set-up carryover. Manag Sci. 2001;47:851–863.

 

  1. Pin˜eyro P, Viera O. The economic lot-sizing problem with remanufacturing: analysis and an improved algorithm. J Reman. 2015;5(12):1-13.

 

  1. Kuik R, Salomon M, Wassenhove LN V, Maes J. Linear programming, simulated annealing and tabu search heuristics for lot sizing in bottleneck assembly systems. IIE Transactions. 1993;25(1):62-72.

 

  1. Hindi K. Solving the single-item, capacitated dy- namic lot-sizing problem with startup and reser- vation costs by tabu search. Comput Ind Eng. 1995;28(4):701-707.

 

  1. Kimms A. Competitive methods for multi- level lot sizing and scheduling: tabu search and randomized regrets. Int J Prod Res. 1996;34(8):2279-2298.

 

  1. Hindi K S. Solving the clsp by a tabu search heuristic. J Oper Res Soc. 1996;47(1):151-161.

 

  1. Mohan G, Ding K, Bourjolly j-m, Mohan S. A tabu-search heuristic for the capacitated lot- sizing problem with set-up carryover. Manage- ment Science. 2001;47:851-863.

 

  1. Hung Y-F, Chen C-P, Chuang S-C, Hung M-H. Using tabu search with ranking candidate list to solve production planning problems with setups. Computers & Industrial Engineering. 2003;45:615-634.

 

  1. Ta¸s D Stokastik su¨reler I˙¸ceren kapasite kısıtlı parti bu¨yu¨klu¨˘gu¨ belirleme problemi. Avrupa Bilim ve Teknoloji Dergisi. 2019;16:441–453.

 

  1. Glover F.  Tabu  search  -  part  1.  ORSA Journal on Computing. 1989;1:190-206.

 

  1. Glover F.  Tabu  search  -  part  2.  ORSA Journal on Computing. 1990;2:4-32.

 

  1. Held M,   Wolfe   P,   Crowder   H   P.   Validation of   sub-gradient   optimization.    Math  Program. 1974;6:62-88.

 

  1. Walpole R E, Myers R H, Myers S L, Ye K. Prob- ability & statistics for engineers and scientists. Pearson Education, 9th edition. 2011;

 

  1. Michelucci U.  Fundamental Mathematical Concepts for Machine Learning in Science. Springer.  2024;

 

  1. Turan M  E,  Cetin  T.  Analyzing the  effect  of sewer  network  size  on  optimization   algorithms’ performance in sewer system optimization. Water. 2024;16(6).

 

  1. Amaral AR  S.  A  mixed-integer  programming formulation  for  optimizing  the  double  row   lay- out  problem.  Optimization  Methods  and  Software. 2024;39(6):1428-1444.
Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing