AccScience Publishing / IJOCTA / Volume 9 / Issue 3 / DOI: 10.11121/ijocta.01.2019.00671
RESEARCH ARTICLE

A new auxiliary function approach for inequality constrained global optimization problems

Nurullah Yilmaz1 Ahmet Sahiner1
Show Less
1 Department of Mathematics, Suleyman Demirel University, Isparta, Turkey
Submitted: 14 August 2018 | Accepted: 26 January 2019 | Published: 15 April 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract
In this study, we deal with the nonlinear constrained global optimization problems. First, we introduce a new smooth exact penalty function for constrained optimization problems. We combine the exact penalty function with the auxiliary function in regard to constrained global optimization. We present a new auxiliary function approach and the adapted algorithm for solving  non-linear inequality constrained global optimization problems. Finally, we illustrate the efficiency of the algorithm on some numerical examples.
 
Keywords
Constrained optimization
global optimization
smoothing approach
penalty function
Conflict of interest
The authors declare they have no competing interests.
References

[1] Ling, B.W.K., Wu, C.Z., Teo, K.L. & Re- hbock, V. (2013). Global optimal design of IIR filters via constraint transcription and filled function methods. Circuits, Systems, and Signal Processing, 32, 1313–1334.

[2] Evirgen, F. (2016). Analyze the optimal so- lutions of optimization problems by means of fractional gradient based system using VIM. An International Journal of Optimization and Control: Theories & Applications (IJOCTA). 6(2), 75–83.

[3] Akteke-Ozkurt, B., Weber, G.W. and Kok- sal, G. (2017). Optimization of generalized de- sirability functions under model uncertainty. Optimization, 66(12), 2157–2169.

[4] Ozmen, A., Kropat, E. & Weber, G.W.(2017). Robust optimization in spline regres- sion models for multi-model regulatory net- works under polyhedral uncertainty. Opti- mization, 66 (12), 2135–2155.

[5] Nocedal, J. and Wright, S.J. (2006). Numeri- cal Optimization. 2nd Edition, Springer, New York.

[6] Di Pillo, G. & Grippo, L. (1989). Exact penalty functions in constrained optimiza- tion, SIAM Journal on Control and Optimiza- tion, 27(6), 1333–1360.

[7] Zheng, F.Y. & Zhang, L.S. (2012). New sim- ple exact penalty function for constrained optimization. Applied Mathematics and Me- chanics, 33(7), 951–962.

[8] Rao, S.S. (2009). Engineering Optimization: Theory and Practice. 4th Edition, John Wi- ley & Sons, New Jersey.

[9] Zangwill, W.I. (1967). Nonlinear programing via penalty functions. Management Science, 13, 344–358.

[10] Bertsekas, D. (1975). Nondiferentiable op- timization via approximation. Mathematical Programming Study, 3, 1–25.

[11] Chen, C., & Mangasarian, O.L. (1996). A class of smoothing functions for nonlinear and mixed complementarity problem. Computa- tional Optimization and Applications, 5, 97– 138.

[12] Xavier, A.E. (2010). The hyperbolic smooth- ing clustering method. Pattern Recognition, 43, 731–737.

[13] Chen, X. (2012). Smoothing methods for nonsmooth, nonconvex minimzation. Mathe- matical Programming Ser. B, 134 71–99.

[14] Grossmann, C. (2016). Smoothing techniques for exact penalty function methods. Contem- porary Mathematics, 658 , 249–265.

[15] Zang, I. (1980). A smoothing out technique formin-max optimization. Mathematical Pro- gramming, 19, 61–77.

[16] Bagirov, A.M., Nuamiat, A. Al & Sultanova, N. (2013). Hyperbolic smoothing functions for non-smooth minimization. Optimization, 62(6), 759-782.

[17] Pinar, M.C. & Zenios, S. (1994). On smooth- ing exact penalty functions for convex con- strained optimization. SIAM Journal of Op- timization, 4, 468–511.

[18] Meng, Z., Dang, C., Jiang, M. & Shen R.(2011). A smoothing objective penalty func- tion algorithm for inequality constrained opti- mization problems. Journal Numerical Func- tional Analysis and Optimization, 32, 806– 820.

[19] Lian, S.J. (2012). Smoothing approximation to l1 exact penalty for inequality constrained optimization. Applied Mathematics and Com- putation, 219, 3113–3121 (2012).

[20] Sahiner, A., Kapusuz, G. & Yilmaz, N.(2016). A new smoothing approach to exact penalty functions for inequality constrained optimization problems. Numerical Algebra, Control and Optimization, 6(2), 161–173.

[21] Sahiner, A., Yilmaz, N. & Kapusuz, G.(2019). A novel modeling and smoothing tech- nique in global optimization. Journal of In- dustrial and Management Optimization, 15(1), 113–139.

[22] Lin, H., Wang, Y., Gao, Y. & Wang, X.(2018). A filled function method for global op- timization with inequality constraints. Com- putational and Applied Mathematics, 37(2), 1524–1536.

[23] Horst, R. & Pardalos, P.M. (eds.). (1995). Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht.

[24] Locatelli, M. & Schoen, F. (2013). Global Op- timization: Theory, Algorithms, and Applica- tions. SIAM, Philadelphia.

[25] Sergeyev, Y.D., Strongin, R.G. & Lera, D.(2013). Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, New York.

[26] Zhigljavsky, A. & Zilinskas, A. (2008). Sto- chastic Global Optimization, Springer, New York.

[27] Levy, A.V. & Montalvo, A. (1985). The tun- neling algorithm for the global minimization of functions. SIAM Journal on Scientific and Statistical Computing, 6 (2), 15–29.

[28] Ge, R.P. (1990). A filled function method for finding global minimizer of a function of several variables. Mathematical Programming, 46, 191–204.

[29] Zhang, L.-S., Ng, C.-K., Li, D. & Tian, W.-W. (2004). A new filled function method for global optimization. Journal of Global Opti- mization, 28, 17–43.

[30] Ng, C.K., Li, D. & Zhang, L.S. (2010). Global descent method for global optimiza- tion. SIAM Journal of Optimization, 20(6), 3161–3184.

[31] Wang, Y., Fang, W. & Wu, T. (2009). A cut- peak function method for global optimization. Journal of Computational and Applied Math- ematics, 230, 135–142.

[32] Liu, J., Zhang, S., Wu, C., Liang, J., Wang, X. & Teo, K.L. (2016). A hybrid approach to constrained global optimization. Applied Soft Computing, 47, 281–294.

[33] Sahiner, A., Yilmaz, N. & Kapusuz, G.(2017). A descent global optimization method based on smoothing techniques via Bezier curves. Carpathian Journal of Mathematics, 33(3), 373–380.

[34] Xu, X., Meng, Z., Sun, J. & Shen, R.(2011). A penalty function method based on smoothing lower order penalty function. Jour- nal of Computational and Applied Mathemat- ics, 235, 4047–4058.

[35] Zhang, Y., Xu, Y. & Zhang, L. (2009). A filled function method applied to nonsmooth constrained global optimization. Journal of Computational and Applied Mathematics, 232, 415–426.

[36] Wu, Z.Y., Bai, F.S., Lee, H.W.J. & Yang, Y.J. (2007). A filled function method for constrained global optimization. Journal of Global Optimization, 39, 495–507.

[37] Gao, Y., Yang, Y. & You, M. (2015). A new filled function method for global optimization. Applied Mathematics and Computation, 268, 685–695.

[38] Jones, D.R., Perttunen, C.D. & Stuckman, B.E. (1993). Lipschitzian optimization with- out the Lipschitz constant. Journal of Opti- mization Theory and Applications, 79, 157– 181.

[39] Jones, D.R., Schonlau, M. & Welch, W.J.(1998). E伍cient global optimization of expen- sive black-box functions. Journal of Global Optimization, 13, 455–492.

[40] Kirkpatrick, S., Gelatt, C.D. & Vecci, P.M.(1983). Optimization by simulated annealing. Science, 220, 671–680.

[41] Kennedy, J. & Eberhart, R. (1997). Parti- cle swarm optimization. IEEE International Conference on Neural Networks, 1, 1942– 1948.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing