AccScience Publishing / IJOCTA / Volume 9 / Issue 1 / DOI: 10.11121/ijocta.01.2019.00574
RESEARCH ARTICLE

Fractional Hermite-Hadamard type inequalities for functions whose derivatives are extended s-(?,m)-preinvex

Badreddine Meftah1* Abdourazek Souahi2
Show Less
1 Laboratoire des t´el´ecommunications, Facult´e des Sciences et de la Technologie, University of 8 May 1945 Guelma, Guelma, Algeria
2 Laboratory of Advanced Materials, University of Badji Mokhtar-Annaba, Annaba, Algeria
Submitted: 6 January 2018 | Accepted: 3 January 2019 | Published: 31 January 2019
© 2019 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, we introduce the class of extended s-(alpha,m)-preinvex functions. We establish a new fractional integral identity and derive some new fractional Hermite-Hadamard type inequalities for functions whose derivatives are in this novel class of function.

Keywords
Iintegral inequality
extended s-(alpha
m)-preinvex functions
Hölder inequality
Conflict of interest
The authors declare they have no competing interests.
References

[1] Mitrinovi/c, D.S., Pecari/c, J.E√ . and Fink, A.M.(1993). Classical and new inequalities in anal- ysis. Mathematics and its Applications (East European Series), 61. Kluwer Academic Pub- lishers Group, Dordrecht.

[2] Khan, M.A., Khurshid, Y., Ali, T. and Rehman, N. (2018). Inequalities for Hermite- Hadamard type with applications, Punjab Univ. J. Math. (Lahore), 50(3), 1–12.

[3] Chu, Y.M., Khan, M.A., Khan, T.U. and Ali, T. (2016). Generalizations of Hermite- Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl. 9(6), 4305– 4316.

[4] Set, E., Karata>s, S.S. and Khan, M.A.(2016). Hermite-Hadamard type inequalities obtained via fractional integral for diferen- tiable m-convex and (Q, m)-convex functions, Int. J. Anal. 2016, Art. ID 4765691, 8 pp.

[5] Chu, Y.M., Khan, M.A., Ali, T. and Dragomir, S.S. (2017). Inequalities for Q- fractional diferentiable functions, J. Inequal. Appl. 2017, Paper No. 93, 12 pp.

[6] Khan, M.A., Ali, T. and Dragomir, S.S.(2018). Hermite–Hadamard type inequalities for conformable fractional integrals, Rev. R. Acad. Cienc. Exactas F/ls. Nat. Ser. A Math. RACSAM, 112(4), 1033–1048.

[7] Khan, M.A., Khurshid, Y. and Ali, T. (2017). Hermite-Hadamard inequality for fractional integrals via η-convex functions, Acta Math. Univ. Comenian. (N.S.), 86(1), 153–164.

[8] Khan, M.A., Chu, Y.M., Khan, T.U. and Khan, J. (2017). Some new inequalities of Hermite-Hadamard type for s-convex func- tions with applications, Open Math., 15, 1414–1430.

[9] Khan, M.A., Khurshid, Y., Ali, T. and Rehman, N. (2016). Inequalities for three times diferentiable functions, Punjab Univ. J. Math. (Lahore), 46(2), 35–48.

[10] Kirmaci, U.S. and O(¨)zdemir, M.E. (2004).Some inequalities for mappings whose deriva- tives are bounded and applications to special means of real numbers. Appl. Math. Lett., 17(6), 641–645.

[11] Sarikaya, M.Z., Set, E., Yaldiz, H. and Ba>sak, N. (2013). Hermite–Hadamard’s in- equalities for fractional integrals and re- lated fractional inequalities. Mathematical and Computer Modelling. 57(9), 2403-2407.

[12] Zhu, C., Feckan, M√ . and Wang, J. (2012). Fractional integral inequalities for diferen- tiable convex mappings and applications to special means and a midpoint formula. J. Appl. Math. Stat. Inf. 8(2), 21-28.

[13] Pecari/c, J.E., Proschan, F√ . and Tong, Y.L.(1992). Convex functions, partial orderings, and statistical applications. Mathematics in Science and Engineering. 187. Academic Press, Inc., Boston, MA.

[14] Dragomir, S.S., Pecari/c, J.E√ . and Persson, L.E. (1995). Some inequalities of Hadamard type. Soochow J. Math. 21(3), 335–341.

[15] Godunova, E.K. and Levin, V.I. (1985). Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (Russian) Numerical mathematics and mathematical physics (Rus- sian), 138–142, 166, Moskov. Gos. Ped. Inst., Moscow.

[16] Dragomir, S.S. (2015). Inequalities of Hermite-Hadamard type for h-convex func- tions on linear spaces. Proyecciones 34(4), 323–341.

[17] Noor, M.A., Noor, K.I., Awan, M.U. and Khan, S. (2014). Fractional Hermite- Hadamard inequalities for some new classes of Godunova-Levin functions. Appl. Math. Inf. Sci., 8(6), 2865–2872.

[18] Orlicz, W. (1961). A note on modular spaces. I. Bull. Acad. Polon. Sci. Math. Astronom. Phys. 9, 157–162.

[19] Breckner, W.W. (1978). Stetigkeitsaus- sagen f¨ur eine Klasse verallgemeinerter konvexer Funktionen in topologischen lin- earen R¨aumen. (German) Publ. Inst. Math. (Beograd) (N.S.) 23(37), 13–20.

[20] Xi, B-Y. and Qi, F. (2015). Inequalities of Hermite-Hadamard type for extended s- convex functions and applications to means. J. Nonlinear Convex Anal. 16(5), 873–890.

[21] Toader, G. (1985). Some generalizations of the convexity. Proceedings of the colloquium on approximation and optimization (Cluj- Napoca, 1985), 329–338, Univ. Cluj-Napoca, Cluj-Napoca.

[22] Mihesan, V.G. (1993). A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, Vol. 1., Ro- mania.

[23] Eftekhari, N. (2014). Some remarks on (s, m)-convexity in the second sense. J. Math. Inequal. 8(3), 489–495.

[24] Noor, M.A., Noor, K.I. and Awan, M.U.(2015). Fractional Ostrowski inequalities for (s, m)-Godunova-Levin functions. Facta Univ. Ser. Math. Inform. 30(4), 489–499.

[25] Muddassar, M., Bhatti, M.I. and Irshad, W.(2013). Generalisations of integral inequalities of Hermite-Hadamard type through convex- ity. Bull. Aust. Math. Soc. 88(2), 320–330.

[26] Weir, T. and Mond, B. (1988). Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl., 136(1), 29–38.

[27] Noor, M.A., Noor, K.I., Awan, M.U. and Li, J. (2014) On Hermite-Hadamard inequal- ities for h-preinvex functions. Filomat, 28(7), 1463-1474.

[28] Noor, M.A., Noor, K.I., Awan, M.U. and Khan, S. (2014). Hermite-Hadamard inequali- ties for s-Godunova-Levin preinvex functions. J. Adv. Math. Stud., 7(2), 12-19.

[29] Wang, Y., Zheng, M-M. and Qi, F. (2014).In- tegral inequalities of Hermite-Hadamard type for functions whose derivatives are Q- preinvex. J. Inequal. Appl. 2014, 2014:97, 10 pp.

[30] Li, J-H. (2010). On Hadamard-type inequal- ities for s-preinvex functions. Journal of Chongqing Normal University (Natural Sci- ence), 27(4), p. 003.

[31] Latif, M.A. and Shoaib, M. (2015). Hermite- Hadamard type integral inequalities for dif- ferentiable m-preinvex and (Q, m)-preinvex functions. J. Egyptian Math. Soc., 23(2), 236– 241.

[32] Meftah, B. (2016). Hermite-Hadamard’s in- equalities for functions whose first derivatives are (s, m)-preinvex in the second sense. JNT, 10, 54–65.

[33] Deng, J. and Wang, J. (2013). Fractional Hermite-Hadamard inequalities for (Q, m)- logarithmically convex functions. J. Inequal. Appl., 2013:364, 11 pp.

[34] Park, J. (2015). Hermite-Hadamard-like type inequalities for s-convex function and s- Godunova-Levin functions of two kinds. Int. Math. Forum, 9, 3431-3447.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing