Hermite collocation method for fractional order differential equations
This paper focuses on the approximate solutions of the higher order fractional differential equations with multi terms by the help of Hermite Collocation method (HCM). This new method is an adaptation of Taylor's collocation method in terms of truncated Hermite Series. With this method, the differential equation is transformed into an algebraic equation and the unknowns of the equation are the coefficients of the Hermite series solution of the problem. This method appears as a useful tool for solving fractional differential equations with variable coefficients. To show the pertinent feature of the proposed method, we test the accuracy of the method with some illustrative examples and check the error bounds for numerical calculations.
[1] Kilbas, A.A., Sirvastava, H.M., Trujillo, J.J. (2006). Theory and Application of Fractional Diferential Equations. North-Holland Mathematics Studies. Vol 204, Amsterdam.
[2] Mainardi, F., Luchko, Yu., Pagnini, G. (2001). The fundamental Solution of the Space-Time Fractional Difusion Equation. Frac. Calc. Appl. Anal., 4(2), 153- 152.
[3] Ross, B. (1975). Fractional Calculus and its Ap- plications. Lecture Notes in Mathematics. Vol. 457, Springer Verlag.
[4] Stanislavsky, A.A. (2004) Fractional Oscillator. Phys. Rev. E., 70(5).
[5] Trujillo, J.J. (1999). On a Riemann-Liouville Gener- alised Taylor’s Formula. J. Math. Anal. Appl., 231, 255-265.
[6] Podlubny, I. (1999). Fractional Diferential Equations. Academic Press, New York.
[7] Ciesielski, M., Leszcynski, J. (2003). Numerical sim- ulations of anomalous difusion. Computer Methods Mech. Conference, Gliwice Wisla Poland.
[8] Yuste, S.B. (2006). Weighted average finite diference methods for fractional difusion equations. J. Comput. Phys., 1, 264-274.
[9] Odibat, Z.M. (2006). Approximations of fractional in- tegrals and Caputo derivatives. Appl. Math. Comput., 527-533.
[10] Odibat, Z.M. (2009). Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul., 79(7), 2013-2020.
[11] Ford, N.J., Connolly, A.Joseph. (2009). Systems- based decomposition schemes for the approximate so- lution of multi-term fractional diferential equations. J. Comput. Appl. Math., 229, 382-391.
[12] Ford, N.J. (2001). Simpson, A. Charles, The numer- ical solution of fractional diferential equations:speed versus accuracy. Numer. Alg., 26, 333-346.
[13] Sweilam, N.H., Khader, M.M., Al-Bar, R.F. (2007). Numerical studies for a multi order fractional difer- ential equations. Phys. Lett. A, 371, 26-33.
[14] Momani, S., Odibat, Z. (2006). Analytical solution of a time-fractional Navier-Stokes equation by ado- mian decomposition method. Appl. Math. Comput., 177, 488-494.
[15] Odibat, Z., Momani, S. (2007). Numerical approach to diferential equations of fractional order. J. Comput. Appl. Math., 207(1), 96-110.
[16] Odibat, Z., Momani, S. (2008). Numerical methods for nonlinear partial diferential equations of fractional order. Appl. Math. Model., 32, 28-39.
[17] Odibat, Z., Momani, S. (2006). Application of varia- tional iteration method to equation of fractional order. Int. J. Nonlinear Sci. Numer. Simul., 7, 271-279.
[18] Wu, J.L. (2009). A wavelet operational method for solving fractional partial diferential equations numer- ically. Appl. Math. Comput., 214, 31-40.
[19] Ert¨urk,V.S., Momani, S. (2008). Solving systems of fractional diferential equations using diferential transform method. J. Comput. Appl. Math., 215, 142- 151.
[20] Yal>c1nba>s, S., Konuralp, A., Demir, D.D., Sorkun, H.H. (2010). The solution of the fractional diferen- tial equation with the generalized Taylor collocation method. IJRRAS, August 2010.
[21] Abd-Elhameed, W.M., Youssri, Y.H. (2016). A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Frac- tional Diferential Equations. Entropy, 18(10), 345.
[22] Abd-Elhameed, W.M., Youssri, Y.H. (2016). Spectral Solutions for Fractional Diferential Equations via a Novel Lucas Operational Matrix of Fractional Deriva- tives. Romanian Journal of Physics, 61(5-6), 795-813.
[23] Abd-Elhameed, W.M., Youssri, Y.H., (2015). New Spectral Solutions of Multi-Term Fractional-Order Initial Value Problems With Error Analysis. CMES: Computer Modeling in Engineering and Sciences, 105(5), 375-398.
[24] Youssri, H., Abd-Elhameed W.M. (2016). Spectral So- lutions for Multi-Term Fractional Initial Value Prob- lems Using a New Fibonacci Operational Matrix of Fractional Integration. Progress in Fractional Difer- entiation and Applications, 2(2), 141-151.
[25] Kumar, P., Agrawal, O.P. (2006). An approximate method for numerical solution of fractional diferen- tial equations. Signal Process, 86, 2602-2610.
[26] Kumar, P. (2006). New numerical schemes for the solution of fractional diferential equations. Southern Illinois University at Carbondale. Vol 134.
[27] Kumar, P., Agrawal, O.P. (2006). Numerical scheme for the solution of fractional diferential equations of order greater than one. J. Comput. Nonlinear Dyn., 1, 178-185.
[28] Yavuz M., O(¨)zdemir, N. (2018). A Diferent Approach to the European Option Pricing Model with New Frac- tional Operator. Mathematical Modelling of Natural Phenomena, 13(1),1-12.
[29] Avci, D., Eroglu I(˙)skender, B.B, O(¨)zdemir, N. (2017).Conformable heat equation on a radial symmetric plate. Thermal Science, 21(2), 819-826.
[30] Yavuz, M., O(¨)zdemir, N. (2018). Numerical inverse Laplace homotopy technique for fractional heat equa- tions. Thermal Science, 22(1), 185-194.
[31] Dattoli, G. (2004). Laguerra and generalized Her- mite polynomials: the point of view of the operation method. Integral Transforms Special Func., 15, 93-99.
[32] Akg¨on¨ull¨u, N.,S>ahin, N., Sezer, M. (2010). A Hermite Collocation Method for the Approximate Solutions of Higher-Order Linear Fredholm Integro-Diferential Equations. Numerical Methods for Partial Diferential Eqautions, 27(6), 1708-1721.
[33] Caputo, M. (1967). Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. Royal Astron. Soc., 13, 529-539.
[34] Samko,S., Kilbas, A., Marichev, O. (1993). Fractional integral and derivatives theory and applications. Gor- don and Breach, New York.
[35] Diethelm, K., Ford, N.J. (2002). Numerical Solution of the Bagley-Torvik Equation. BIT, 42, 490-507.
[36] Diethelm K. (1997). An algorithm for the numerical solution of diferential equations of fractional order. Electronic Transactions on Numerical Analysis,5, 1-6.