Sinc-Galerkin method for solving hyperbolic partial differential equations
[1] Stenger, F. (1979). A Sinc-Galerkin Method of So- lution of Boundary Value Problems. Mathematics of Computation, 33 85-109.
[2] Stenger, F. (2000). Summary of Sinc numerical meth- ods. Journal of Computational and Applied Mathe- matics, 121 379-420.
[3] Alonso, N., Bowers, K.L. (2009). An Alternating- Direction Sinc-Galerkin Method for Elliptic Problems. Journal of Complexity, 25, 237–252.
[4] Bowers, K.L., Lund, J. (1987). Numerical Solution of Singular Poisson Problems via the Sinc-Galerkin Method. SIAM Journal on Numerical Analysis, 24(1) 36-51.
[5] Koonprasert, S. (2003). The Sinc-Galerkin Method for Problems in Oceanography. PhD thesis, Montana State University, Bozeman, Montana.
[6] Lewis, D.L., Lund, J., Bowers, K. L. (1987). The Space-Time Sinc-Galerkin Method for Parabolic Problems. International Journal for Numerical Meth- ods in Engineering, 24 1629-1644.
[7] Lund, J. (1986). Symmetrization of the Sinc-Galerkin Method for Boundary Value Problems. Mathematics of Computation, 47, 571-588.
[8] Lund, J., Bowers, K.L., McArthur, K. M., (1989). Symmetrization of the Sinc-Galerkin Method with Block Techniques for Elliptic Equations. IMA Jour- nal of Numerical Analysis, 9, 29-46.
[9] Lund, J., Bowers, K.L. (1992). Sinc Methods for Quadrature and Diferential Equations. SIAM: Philadelphia.
[10] Lybeck, N.J. (1994). Sinc Domain Decomposition Methods for Elliptic Problems. PhD thesis, Montana State University, Bozeman, Montana.
[11] Lybeck, N.J., Bowers, K.L. (1996). Domain Decompo- sition in Conjunction with Sinc Methods for Poisson’s Equation. Numerical Methods for Partial Diferential Equations, 12, 461-487.
[12] McArthur, K.M., Bowers, K.L., Lund, J. (1987). Nu- merical Implementation of the Sinc-Galerkin Method for Second-Order Hyperbolic Equations. Numerical Methods for Partial Diferential Equations, 3, 169-185.
[13] McArthur, K.M., Bowers, K.L., Lund, J. (1990). The Sinc Method in Multiple Space Dimensions: Model Problems. NumerischeMathematik, 56, 789-816.
[14] Morlet, A.C., Lybeck, N.J., Bowers, K.L. (1997). The Schwarz Alternating Sinc Domain Decomposition Method. Applied Numerical Mathematics, 25, 461-483.
[15] Morlet, A.C., Lybeck, N.J., Bowers, K.L. (1999). Con- vergence of the Sinc Overlapping Domain Decomposi- tion Method. Applied Mathematics and Computation, 98, 209-227.
[16] Ng, M. (1999). Fast Iterative Methods for Symmet- ric Sinc-Galerkin Systems. IMA Journal of Numerical Analysis, 19 357-373.
[17] Ng, M., Bai, Z. (2003). A Hybrid Preconditioner of Banded Matrix Approximation and Alternating- Direction Implicit Iteration for Symmetric Sinc- Galerkin Linear Systems, Linear Systems, Linear Al- gebra and its Applications, 366 317-335.
[18] Stenger, F. (1981). Numerical Methods Based on Whittaker Cardinal, or Sinc Functions. SIAM Review, 23 165-224.
[19] Stenger, F. (1993). Numerical Methods Based on Sinc and Analytic Functions, Springer-Verlag, New York.
[20] Whittaker, E.T. (1915). On the Functions which are Represented by the Expansions of the Interpolation Theory. Proceedings of the Royal Society of Edinburg, 35, 181-194.
[21] Whittaker, J.M. (1961). Interpolation Function The- ory, Cambridge Tracts in Mathematics and Mathe- matical Physics. No. 33, Cambridge University Press, London.
[22] Stenger, F. (1976). Approximations via Whittaker’s Cardinal Function. Journal of Approximation Theory, 17, 222-240.
[23] Stenger, F., O’Reilly, M. J. (1998). Computing Solu- tions to Medical Problems via Sinc Convolution. IEEE Transactions on Automatic Control, 43, 843.
[24] Narasimhan, S., Majdalani, J., Stenger, F. (2002). A First Step In Applying The Sinc Collocation Method To The Nonlinear Navier Stokes Equations. Numerical Heat Transfer,41, 447-462.
[25] Mueller, J.L., Shores, T.S. (2004). A New Sinc- Galerkin Method for Convection-Difusion Equations with Mixed Boundary Conditions. Computers and Mathematics with Applications, 47, 803-822.
[26] El-Gamel, M., Behiry, S.H., Hashish, H. (2003). Nu- merical method for the solution of special nonlinear fourth-order boundary value problems. Applied Math- ematics and Computation, 145, 717–734.
[27] Alkan, S., Secer, A. (2015). Solving nonlinear bound- ary value problems by the Galerkin method with sinc functions. Open Physics, 13, 1, 389-394.
[28] Zamani, N.G. (1987). A finite element based colloca- tion method for eigenvalue calculations. Journal of the Franklin Institute, 324, 205-217.
[29] Alkan, S., Secer, A. (2015). Application of Sinc- Galerkin method for solving space-fractional bound- ary value problems. Mathematical Problems in Engi- neering, 2015, 1-10.
[30] Lybeck, N.J., Bowers, K.L. (1996). Sinc methods for domain decomposition. Applied Mathematics and Computation, 75, 4-13.
[31] Secer, A., Alkan, S., Akinlar, M.A., Bayram, M.(2013). Sinc-Galerkin method for approximate solu- tions of fractional order boundary value problems. Boundary Value Problems, 2013, 1, 281.
[32] Secer, A., Kurulay M., Bayram, M., Akinlar, M.A.(2013). An e伍cient computer application of the sinc- Galerkin approximation for nonlinear boundary value problems, Boundary Value Problems, 2012, 1, 117.