Analysis of rubella disease model with non-local and non-singular fractional derivatives
[1] Abdeljawad, T. and Baleanu, D. (2016). Discrete frac- tional diferences with nonsingular discrete Mittag- Le er kernels. Advances in Diference Equations. (1), 232.
[2] Abdeljawad, T. and Baleanu, D. (2016). Integration by parts and its applications of a new nonlocal frac- tional derivative with Mittag-Le er nonsingular ker- nel. arXiv preprint arXiv, 1607.00262.
[3] Alkahtani, B.S.T. (2016). Chua’s circuit model with Atangana–Baleanu derivative with fractional order. Chaos Solitons and Fractals. 89, 547–551.
[4] Atangana, A. and Koca, I. (2016). Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order. Chaos, Solitons and Fractals. 89, 447-454.
[5] Atangana, A. and Koca, I. (2016). On the new frac- tional derivative and application to Nonlinear Baggs and Freedman model. Journal of Nonlinear Sciences and Applications. (9), 2467-2480.
[6] Atangana, A. and Baleanu, D. (2016). New frac- tional derivatives with nonlocal and non-singular ker- nel: theory and application to heat transfer model. Thermal Science. 20 (2), 763-769.
[7] Atangana, A. and Owolabi, K.M. (2017). New nu- merical approach for fractional diferential equations. preprint, arXiv, 1707.08177.
[8] Baskonus, H.M. and Bulut, H. (2015). On the nu- merical solutions of some fractional ordinary dif- ferential equations by fractional Adams-Bashforth- Moulton Method. Open Mathematics. 13 (1), 547–556.
[9] Baskonus, H.M. and Bulut, H. (2016). Regarding on the prototype solutions for the nonlinear fractional- order biological population model. AIP Conference Proceedings. 1738, 290004.
[10] Baskonus, H.M., Mekkaoui, T., Hammouch, Z. and Bulut, H. (2015). Active control of a chaotic fractional order economic system. Entropy. 17 (8), 5771-5783.
[11] Baskonus, H.M., Hammouch, Z., Mekkaoui, T. and Bulut, H. (2016). Chaos in the fractional order logistic delay system: circuit realization and synchronization. AIP Conference Proceedings, 1738, 290005.
[12] Caputo, M. & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Diferentiation and Applications. 1, 73- 85.
[13] Coronel-Escamilla, A., G/omez-Aguilar, J.F., Baleanu, D., Escobar-Jim/enez, R. F., Olivares-Peregrino, V. H., and Abundez-Pliego, A. (2016). Formulation of Euler- Lagrange and Hamilton equations involving fractional operators with regular kernel. Advances in Diference Equations. (1), 283.
[14] Gay, N.J., Pelletier, L. and Duclos, P. (1998). Mod- elling the incidence of measles in Canada: An assess- ment of the options for vaccination policy. Vaccine. 16, 794–801.
[15] Gencoglu, M.T., Baskonus, H.M. and Bulut, H.(2017). Numerical simulations to the nonlinear model of interpersonal Relationships with time fractional derivative. AIP Conference Proceedings. 1798, 1-9, 020103.
[16] G/omez-Aguilar, J.F., Morales-Delgado, V.F., Taneco- Hern/andez, M.A., Baleanu, D., Escobar-Jim/enez,R.F., and Al Qurashi, M.M. (2016). Analytical so- lutions of the electrical RLC circuit via Liouville– Caputo operators with local and non-Local kernels. Entropy. 18 (8), 402.
[17] Odibat, Z.M. and Momani, S. (2006). Application of variational iteration method to nonlinear diferential equation of fractional order. International Journal of Nonlinear Sciences and Numerical Simulations. 7, 27- 34.
[18] Owolabi, K.M. (2016). Numerical solution of difusive HBV model in a fractional medium. SpringerPlus. 5,19 pages.
[19] Owolabi, K.M. and Atangana, A. (2017). Numerical approximation of nonlinear fractional parabolic difer- ential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense. Chaos, Solitons and Frac- tals. 99, 171-179.
[20] Owolabi, K.M. (2017). Mathematical modelling and analysis of two-component system with Caputo frac- tional derivative order. Chaos Solitons and Fractals. 103, 544-554.
[21] Ozalp, N. and Koca, I. (2012). A fractional order non- linear dynamical model of interpersonal relationships. Advances in Diference Equations. 189, 7 pages.
[22] Singh, J., Kumar, D., Al Qurashi, M. and Baleanu, D.(2017). A new fractional model for giving up smoking dynamics. Advances in Diference Equations, 88 (1),16 pages.