AccScience Publishing / IJOCTA / Volume 8 / Issue 1 / DOI: 10.11121/ijocta.01.2018.00464
RESEARCH ARTICLE

On discrete time infinite horizon optimal growth problem

Ay¸seg¨ul Yıldız Ulus1*
Show Less
1 Department of Mathematics, Galatasaray University, Istanbul, Turkey ˙
IJOCTA 2018, 8(1), 102–116; https://doi.org/10.11121/ijocta.01.2018.00464
Submitted: 30 March 2017 | Accepted: 10 December 2017 | Published: 28 December 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Optimal growth problem is an important optimization problem in the theory of economic dynamics. This paper provides an overview of the main approaches used in the existing literature in solving infinite horizon discrete time optimal growth problem and includes very recent developments.

Keywords
Optimal growth
Infinite horizon optimal control
Dynamic programming
Lagrange multiplier
Pontryagin’s principle
Conflict of interest
The authors declare they have no competing interests.
References

[1] Bellman, R. (1957). Dynamic Programming. Prince- ton University Press, Princeton.

[2] Stokey, N., Lucas Jr., R.E., & Prescott, E.C. (1989). Recursive Methods in Economic Dynamics. Harvard University Press, New-York.

[3] Lucas, R.E., & Stokey, N. (1984). Optimal growth with many consumers. Journal of Economic Theory, 32(1), 139-171.

[4] Le Van, C., & Morhaim, L. (2002). Optimal growth models with bounded or unbounded returns: a uni- fying approach. Journal of Economic Theory, 105(1), 158-187.

[5] Kamihigashi, T. (2014). Elementary results on solu- tions to the Bellman equation of dynamic program- ming: existence, uniqueness and convergence. Eco- nomic Theory, 56(2), 251-273.

[6] Bich P., Drugeon J.P. & Morhaim, L. (2017). On tem- poral aggregators and dynamic programming. Eco- nomic Theory, 1-31.

[7] Bewley, T.F. (1972). Existence of equilibria in economies with finitely many commodities. Journal of Economic Theory, Vol (4), 514540.

[8] Dechert, W.D. (1982). Lagrange multipliers in infinite horizon discrete time optimal control models. Journal of Mathematical Economics, 9(3), 285-302.

[9] Le Van, C., & Saglam, C. (2004). Optimal growth models and the Lagrange multiplier. Journal of Math- ematical Economics, 40(3), 393-410.

[10] Rustichini, A. (1998). Lagrange multipliers in incentive-constrained problems. Journal of Mathemat- ical Economics, 29(4), 365-380.

[11] Dutta, J., & Tammer, C. (2006). Lagrangian condi- tions for vector optimization in Banach spaces. Math- ematical Methodes of Operational Research, 64(3), 521-540.

[12] Blot J., & Chebbi, H. (2000). Discrete Time Pontrya- gin Principles withInfinite Horizons. Journal of Math- ematical Analysis and Applications, 246(1), 265- 279.

[13] Blot J., & Hayek, N. (2008). Infinite horizon dis- crete time control problems for bounded processes. Advances in Diference Equations, 2008(1), 654267.

[14] Blot J., & Hayek, N. (2014). Infinite-horizon optimal control in the discrete-time framework. Springer Briefs in Optimization, Springer, New York.

[15] Blot. J., Hayek N., Pekergin, F. & Pekergin, N. (2015). Pontryagin principles for bounded discrete-time pro- cesses. Optimization, 64(3), 505-520.

[16] Rudin, W.(1973). Functional Analysis. McGraw-Hill, New York.

[17] Dana, R.A., & Le Van, C. (2003). Dynamic Program- ming in Economics. Springer Science & Business Me- dia.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing