AccScience Publishing / IJOCTA / Volume 7 / Issue 1 / DOI: 10.11121/ijocta.01.2017.00292
RESEARCH ARTICLE

New soliton solutions of the system of equations for the ion sound and  Langmuir waves

Seyma Tuluce Demiray1* Hasan Bulut1
Show Less
1 Department of Mathematics, Firat University, Turkey
Submitted: 14 January 2016 | Accepted: 22 August 2016 | Published: 29 November 2016
© 2016 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This study is based on new soliton solutions of the system of equations for the  ion sound wave under the action of the ponderomotive force due to highfrequency field and for the Langmuir wave. The generalized Kudryashov method  (GKM), which is one of the analytical methods, has been tackled for finding  exact solutions of the system of equations for the ion sound wave and the  Langmuir wave. By using this method, dark soliton solutions of this system of  equations have been obtained. Also, by using Mathematica Release 9, some  graphical simulations were designed to see the behavior of these solutions

Keywords
The system of equations
Ion sound wave
Langmuir wave
Generalized Kudryashov method
Dark soliton solutions
Mathematica Release 9
Conflict of interest
The authors declare they have no competing interests.
References

[1] Cher, Y., Czubak, M., and Sulem, C., Blowing Up Solutions to the Zakharov System for LangmuirWaves, Laser Filamentation, Springer International  Publishing, 77-95 (2016).

[2] Eslami, M., Trial solution technique to chiral  nonlinear Schrodinger’s equation in (1+2)- dimensions, Nonlinear Dynamics, 85, 813-816  (2016).

[3] Hammouch, Z., and Mekkaoui, T., Traveling-wave  solutionsof the generalized Zakharov equation with  time-space fractional derivatives, Mathematics in  Engineering, Science and Aerospace, 5(4), 489-498 (2014).

[4] Hammouch, Z., and Mekkaoui, T., Travellingwavesolutions for some fractional partial  differential equation by means ofgeneralized  trigonometry functions, International Journal of  Applied Mathematical Research, 1(2), 206-212  (2012).

[5] Degtyarev, L.M., Nakhan’kov, V.G., and Rudakov,  L.I., Dynamics of the formation and interaction of  Langmuir solitons and strong turbulence, Zh. Eksp. Teor. Fiz., 67, 533-542 (1974).

[6] Degtyarev, L.M., Zakharov, V.E., Sagdeev, R.Z.,  Solov’ev, G.I., Shapiro, V.D., Shevchenko, V.I.,  Langmuir collapse under pumping and wave energy  dissipation, Zh. Eksp. Teor. Fiz., 85, 1221-1231  (1983).

[7] Anisimov, S.I., Berezovskii, M.A., Ivanov, M.F.,  Petrov, I.V., Rubenchick, A.M., Zakharov, V.E.,  Computer simulation of the Langmuir collapse,  Phys. Lett. A, 92(1), 32-34 (1982).

[8] Anisimov, S.I., Berezovskii, M.A., Zakharov, V.E.,  Petrov, I.V., Rubenchik, A.M., Numerical  simulation of a Langmuir collapse, Zh. Eksp. Teor.  Fiz., 84, 2046-2054 (1983).

[9] D’yachenko, A.I., Zakharov, V.E., Rubenchik,  A.M., Sagdeev, R.Z., Shvets, V.F., Numerical  simulation of two-dimensional Langmuir collapse,  Zh. Eksp. Teor. Fiz., 94, 144-155 (1988).

[10] Zakharov, V.E., Pushkarev, A.N., Rubenchik,  A.M., Sagdeev, R.Z., Shvets, V.F., Numerical  simulation of three-dimensional Langmuir collapse  in plasma, Pis'ma v Zh. Eksp. Teor. Fiz., 47, 287- 290 (1988).

[11] Benilov, E. S., Stability of plasma solitons, Zh.  Eksp. Theor. Fiz., 88, 120-128 (1985).

[12] Zakharov, V.E., Pushkarev, A.N., Sagdeev, R.Z.,  Soloviev, S.I., Shapiro, V.D., Shvets, V.F.,  Shevchenko, V.I., “Throughout” modelling of the  one-dimensional Langmuir turbulence, Sov. Phys.  Dokl. 34, 248-251 (1989).

[13] Dyachenko, A.I., Pushkarev, A.N., Rubenchik,  A.M., Sagdeev, R.Z., Shvets, V.F., Zakharov, V.E.,  Computer simulation of Langmuir collapse,  Physica D, 52(1), 78-102 (1991). 

[14] Rubenchik, A.M., Zakharov, V.E., Strong  Langmuir turbulence in laser plasma, Handbook ofPlasma Physics, Elsevier Science Publishers, 3,  335-360 (1991).

[15] Musher, S.L., Rubenchik, A.M., Zakharov, V.E.,  Weak Langmuir turbulence, Phys. Rep. 252(4),  178-274 (1995). 

[16] Robinson, P.A., Willes, A.J., and Cairns, I.H.,  Dynamics of Langmuir and ion-sound waves in  type III solar radio sources, The Astrophysical  Journal, 408, 720-734 (1993).

[17] Chen, Y-H, Lu, W., and Wang, W-H, The  Nonlinear Langmuir Waves in a Multi-ionComponent Plasma, Commun. Theor. Phys., 35,  223-228 (2001).

[18] Soucek, J., Krasnoselskikh, V., Dudok de Wit, T.,  Pickett, J., and Kletzing, C., Nonlinear decay of  foreshock Langmuir waves in the presence of  plasma inhomogeneities: Theory and Cluster  observations, Journal of Geophysical Research,  110, A08102:1-10 (2005).

[19] Dodin, I.Y., Geyko V.I., and Fisch, N.J., Langmuir  wave linear evolution in inhomogeneous  nonstationary anisotropic plasma, Physics of  Plasmas, 16, 112101:1-9 (2009).

[20] Zaslavsky, A., Volokitin, A.S., Krasnoselskikh,  V.V., Maksimovic M., and Bale, S.D., Spatial  localization of Langmuir waves generated from an  electron beam propagating in an inhomogeneous  plasma: Applications to the solar wind, Journal of  Geophysical Research, 115, A08103:1-11 (2010).

[21] Ratcliffe, H., Brady, C.S., Che Rozenan, M.B., and  Nakariakov, V.M., A comparison of weakturbulence and particle-in-cell simulations of weak  electron-beam plasma interaction, AIP-Physics of  Plasmas, 21, 122104:1-9 (2014).

[22] Ajima, N.Y., and Wa, M.O., Formation and  Interaction of Sonic-Langmuir Solitons, Progress of  Theoretical Physics, 56(6), 1719-1739 (1976).

[23] Zakharov, V.E., Collapse of Langmuir Waves,  Zh. Eksp. Teor. Fiz., 62, 1745-1759 (1972).

[24] Tuluce Demiray, S., Pandir, Y., and Bulut, H., New  Soliton Solutions for Sasa-Satsuma Equation,  Waves in Random and Complex Media, 25(3) ,  417-428 (2015).

[25] Tuluce Demiray, S., Pandir, Y., and Bulut, H., New  Solitary Wave Solutions of Maccari System, Ocean  Engineering, 103, 153-159 (2015).

[26] Tuluce Demiray, S., and Bulut, H., New Exact  Solutions of the New Hamiltonian Amplitude  Equation and Fokas Lenells Equation, Entropy, 17,  6025-6043 (2015).

[27] Tuluce Demiray, S., Pandir, Y., and Bulut, H., All  Exact Travelling Wave Solutions of Hirota  Equation and Hirota-Maccari System, Optik, 127,  1848-1859 (2016).

[28] Tuluce Demiray, S., and Bulut, H., Generalized  Kudryashov method for nonlinear fractional doublesinh-Poisson equation, J. Nonlinear Sci. Appl., 9,  1349-1355 (2016).

[29] Tuluce Demiray, S., Pandir, Y., and Bulut, H., The  Analysis of The Exact Solutions of The Space  Fractional Coupled KD Equations, AIP Conference  Proceedings, 1648, 370013-(1-5) (2015)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing