AccScience Publishing / IJOCTA / Volume 3 / Issue 1 / DOI: 10.11121/ijocta.01.2013.00102
APPLIED MATHEMATICS & CONTROL

Minimax fractional programming problem involving nonsmooth generalized ?-univex functions

Anurag Jayswal1* Rajnish Kumar2 Dilip Kumar3
Show Less
1 Department of Applied Mathematicsn School of Mines, Dhanbad-826004, Jharkhand, India
2 Department of Applied Mathematics, Birla Institute of Technology, Patna Campus, Patna-800014, Bihar
3 Department of Applied Mathematics, Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand
Submitted: 19 January 2012 | Published: 5 September 2012
© 2012 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, we introduce a new class of generalized ?-univex functions where the involved functions are locally Lipschitz. We extend the concept of ?-type I invex [S. K. Mishra, J. S. Rautela, On nondifferentiable minimax fractional programming under generalized ?-type I invexity, J. Appl. Math. Comput. 31 (2009) 317-334] to ?-univexity and an example is provided to show that there exist functions that are ?-univex but not ?-type I invex. Furthermore, Karush-Kuhn-Tucker-type sufficient optimality conditions and duality results for three different types of dual models are obtained for nondifferentiable minimax fractional programming problem involving generalized ?-univex functions. The results in this paper extend some known results in the literature.

Keywords
Nondifferentiable minimax fractional programming; α-univexity; sufficient optimality conditions; duality
Conflict of interest
The authors declare they have no competing interests.
References

[1] C. R. Bector, B. L. Bhatia, Sufficient optimality and duality for a minimax problems. Utilitas Math., 27, 229-247 (1985).

[2] C. R. Bector, S. K. Suneja, S. Gupta, Univex functions and univex nonlinear programming. Proceedings of the Administrative Sciences Association of Canada, 115-124, (1992).

[3] S. Chandra, B. D. Craven, B. Mond, Generalized fractional programming duality: A ratio game approach. J. Austral. Math. Soc. Ser. B, 28, 170-180 (1986).

[4] Charnes, W. W. Copper, Goal programming and multi-objective optimization. Part I, European J. Oper. Res.1, 39-54 (1977).

[5] S. Chandra, V. Kumar, Duality in fractional minimax programming. J. Austral. Math. Soc. Ser. A, 58, 376-386 (1995).

[6] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley, New York, ( 1983).

[7] L. Fan, Y. Guo, On strongly α-preinvex functions. J. Math. Anal. Appl., 330, 1412– 1425 (2007).

[8] M. A. Hanson, On sufficiency of the Kuhn- Tucker conditions. J. Math. Anal. Appl., 80, 545-550 (1981).

[9] M. A. Hanson, B. Mond, Further generalizations of convexity in mathematical programming. J. Inform. Optim. Sci., 3, 25-32 (1982).

[10] A. Jayswal, Non-differentiable minimax fractional programming with generalized α -univexity. J. Comput. Appl. Math., 214, 121-135 (2008).

[11] H. C. Lai, J. C. Liu, K. Tanaka, Necessary and sufficient conditions for minimax fractional programming. J. Math. Anal. Appl., 230, 311-328 (1999).

[12] H. C. Lai, J. C. Lee, On duality theorems for a nondifferentiable minimax fractional programming. J. Comput. Appl. Math., 146, 115-126 (2002).

[13] J. C. Liu, Optimality and duality for functions. Optimization, 36, 333-346 (1996).

[14] J. C. Liu, Optimality and duality for multiobjective fractional involving nonsmooth functions. Optimization, 37, 27-39 (1996).

[15] X. J. Long, J. Quan, Optimality conditions and duality for minimax fractional programming involving nonsmooth generalized univexity, Numerical Algebra, Control and Optimization. 1, 361-370 (2011).

[16] S. K. Mishra, R. P. Pant, J. S. Rautela,α -invexity minimax programming. J. Comput. Appl. Math., 206, 122-135 (2007).

[17] S. K. Mishra, J. S. Rautela, On nondifferentiable minimax fractional programming under generalized α -type I invexity. J. Appl. Math. Comput., 31, 317- 334 (2009).

[18] M. A. Noor, On generalized preinvex functions and monotonicities. J. Ineq. Pure Appl. Math., 5, 1-9 (2004).

[19] W. E. Schmitendorf, Necessary conditions and sufficient conditions for static minimax problems, J. Math. Anal. Appl., 57, 683-693 (1977).

[20] M. Stancu Minasian, Fractional programming theory, methods and applications. Kluwer, Dordrecht, ( 1997).

[21] S. Tigan, On some fractional programming models occurring in minimum-risk problem. in: A. Cambini, E. Castagnoli, L. Martine, P. Mazzoleni, S. Schaible (Eds.), Generalized Convexity and Fractional Programming with Economics Applications, Springer-link, Berlin, ( 1990).

[22] Von Neumann, A model of general economic equilibrium. Review of Economics Studies, 13, 1-9 (1945).

[23] T. Weir, A dual for multiobjective fractional programming. J. Infor. Optim. Sci., 7, 261- 269 (1986).

[24] S. R. Yadav, R. N. Mukherjee, Duality for fractional minimax programming problems. J. Austral. Math. Soc. Ser. B., 31, 484-492 (1990).

[25] X. J. Zheng, L. Cheng, Minimax fractional F(ro) P(ra),m)-d(in)-univ(g un)x(e)r J(n)oM(nsm)ath(oo)thAnal(gen)erA(al)p(i)p(z)l(e)d,328, 676-689 (2007).

[26] G. J. Zalmai, Optimality conditions and duality models for a class of nonsmooth constrained fractional variational problems. Optimization, 30, 15-51 (1994).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing