AccScience Publishing / IJOCTA / Volume 2 / Issue 1 / DOI: 10.11121/ijocta.01.2012.0070
OPTIMIZATION & APPLICATIONS

Coordination and Optimization: The Integrated Supply Chain Analysis  with Non-Linear Price-Sensitive Demand

Mohammed Forhad UDDIN1 Kazushi SANO2
Show Less
1 Nagaoka University of Technology (Kamitomiokamachi, 1603-1, Nagaoka, Niigata, 940-2188 - Japan)
2 Nagaoka University of Technology (Kamitomiokamachi, 1603-1, Nagaoka, Niigata, 940-2188 - Japan)
Submitted: 10 August 2011 | Published: 28 December 2011
© 2011 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, a supply chain with a coordination mechanism consisting of a single vendor and buyer  is considered. Further, instead of a price sensitive linear or deterministic demand function, a price-sensitive  non-linear demand function is introduced. To find the inventory cost, penalty cost and transportation cost, it is  assumed that the production and shipping functions of the vendor are continuously harmonized and occur at the  same rate. In this integrated supply chain, the Buyer’s Linear Program (LP), vendor’s Integer Program (IP) and  coordinated Mixed Integer Program (MIP) models are formulated. In this research, numerical example is  presented which includes the sensitivity of the key parameters to illustrate the models. The solution procedures  demonstrate that the individual profit as well as joint profit could be increased by a coordination mechanism  even though the demand function is non-linear. In addition, the results illustrate that Buyer’s selling price, along  with the consumers purchasing price, could be decreased, which may increase the demand of the end market. Finally, a conclusion is drawn in favor of the coordinated supply chain with a non-linear price sensitive demand  function

Keywords
Coordination between vendor and buyer
Inventory management mixed integer program
Nonlinear demand
Conflict of interest
The authors declare they have no competing interests.
References

[1] Banerjee, A., A joint economic-lot-size model  for Purchaser and vendor, Decision Science,  Vol. 17, 292-311(1986).

[2] Chan, C. K., Lee, Y. C. E. and Goyal, S. K., A  delayed payment method in coordinating  multi-buyer supply chain, International  Journal of Production Economics, Vo. 127,  95-102. (2010).

[3] Chen, H.K. and Chou, H.W. , Logit demand  supply chain network equilibrium problem,  Journal of the Eastern Asia Society for  Studies, Vol.7, 515-527(2007). 

[4] Dolgui, A., Soldek, J. and Zaikin, O., Supply  chain optimisation production/process design,  Facility Location and Flow Control, Applied  Optimization, Vol.94, Springer, (2005).

[5] Goyal, S.K., A one-vendor multi-buyer  integrated inventory Model : A comment,  European Journal of Operational Research, Vol. 82, 209-210(1995).

[6] Goyal, S.K., A joint economic-lot-size model  for purchaser and vendor, A comment,  Decision Science, Vol.19, 236-241(1988).

[7] Goyal, S.K. , An integrated inventory model  for a Single supplier-single customer problem,International Journal of Production Research,  Vol.15, No.1, 107-111 (1976).

[8] Huang, C. ,Yu, G.,Wang, S. and Wang, X., Disruption management for supply chain  coordination with exponential demand  function, Acta Mathematica Scientia,Vol  26B (4), 655-669 (2004).

[9] Jokar, M.R. A. and Sajadieh, M. S.,  Optimizing a joint economic lot sizing  problem with price-sensitive demand,  Transaction E: Industrial Engineering, Vol. 16, No. 2, 159-164 (2009).

[10] Lin, Y.-J. and Ho, C.-H., Integrated  inventory model with quantity discount  and price-sensitive demand, Springer,  (2009).

[11] Pourakbar, M., Farahani, R. Z. and Asgari,  N., A joint economic lot-size model for  an integrated supply network using  genetic algorithm, Applied mathematics  and Computation, Vol. 189, 583-596 (2007).

[12] Pujari, N. A., Hale, T. S. And Huq, F., A  continuous approximation procedure for  determining inventory distribution schemas  within supply chains, European Journal of  Operational Research,Vol. 186, 405-422 (2008).

[13] Qin, Y., Tang, H. and Guo, C., Channel  Coordination and volume discounts with  price-sensitive demand, Int. J. Production  Economics, Vol.105, 43-53 (2007).

[14] Qi, X., Bard, J.F. and Yu, G., Supply chain  coordination with demand disruptions,  Omega, Vol.32, 301-312(2004).

[15] Sajadieh, M.S. and Jokar, M.R.A.,  Optimizing shipment, ordering and pricing  policies in a two–stage supply chain with  price sensitive demand, Transportation  Research Part E, Vol. 45, 564-571 (2009).

[16] Sheng, S., Dechen, Z. and Xiaofei, X., Genetic Algorithm for the transportation  problem with discontinuous piecewise linear cost function, International Journal  of Computer Science and network  security, Vol. 6, 182-190 (2006)

[17] Sheffi,Y., Urban transportation networks: equilibrium analysis with mathematical  programming methods, PRENTICE-HALL,  INC., Englewood Cliffs, (1985).

[18] Uddin, M.F. and Sano, K., Mixed Integer  Linear Fractional Programming for Integrated Supply Chain Network Design  and Optimization, International Journal of  Business and Economic (IJBE), Vol.2,  No.1, 57-70 (2010).

[19] Viswanathan, S. and Wanf, Q., Discount  pricing decisions in distribution channels  with price-demand, European Journal of  Operational Research, Vol.149, 571-587 (2003).

[20] Wang, H.C. and Chen, Y.S., Mathematical model with simulation to find the optimal  batch sized for a supply chain, Journal of  the Chinese Institute of Industrial  Engineers, Vol.22, No. 3, 262-271 (2005).

[21] Wu, K.S. and Yen, H.F., On A note on the  economic lot size of the integrated vendor  buyer inventory system derived without  derivatives, International journal of  Information and Management Sciences, Vol. 20, 217-223 (2009).

[22] Zavanella, L. and Zanoni, S., A one vendor  multi-Buyer integrated production  inventory model: The ‘consignment stock’  case, Int. J. Production Economics, Vol.  118, 225-232 (2009).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing