A local differential quadrature method for the generalized nonlinear Schrödinger (GNLS) equation
A local differential quadrature method based on Fourier series expansion numerically solves the generalized nonlinear Schrodinger equation. For time integration, a Runge-Kutta fourth-order method is used. Matrix stability analysis is used to examine the method's stability. Three test problems involving the motion of a single solitary wave, the interaction of two solitary waves, and a solution that blows up in finite time, respectively, demonstrate the accuracy and efficiency of the provided method. Finally, the numerical results obtained from the presented method are compared with the exact solution and those obtained in earlier works available in the literature.
[1] Pathria, D., & Morris, J. L. (1989). Ex- act solutions for a generalized nonlinear Schr¨odinger equation. Physica Scripta, 39(6), 673-679. https://doi.org/10.1088/0031 -8949/39/6/001
[2] Johnson, R. S. (1977). On the modulation of water waves in the neighbourhood of kh ≈ 1.363. Proceedings of the Royal Society of London. A. Mathematical and Physical Sci- ences, 357(1689), 131-141. https://doi.or g/10.1098/rspa.1977.0159
[3] Kakutani, T., & Michihiro, K. (1983). Mar- ginal State of Modulational Instability-Note on Benjamin-Feir Instability. Journal of the Physical Society of Japan, 52(12), 4129-4137. https://doi.org/10.1143/JPSJ.52.4129
[4] Pathria, D., & Morris, J. L. (1990). Pseudo- spectral solution of nonlinear Schr¨odinger equations. Journal of Computational Physics, 87(1), 108-125. https://doi.org/10.1016/ 0021-9991(90)90228-S
[5] Strauss, W. A. (1978). The nonlinear Schr¨odinger equation. In North-Holland Mathematics Studies (Vol. 30, pp. 452-465). North-Holland. https://doi.org/10.1016/ S0304-0208(08)70877-6
[6] Shabat, A., & Zakharov, V. (1972). Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP, 34(1), 62.
[7] Hasimoto, H., & Ono, H. (1972). Nonlin- ear modulation of gravity waves. Journal of the Physical Society of Japan, 33(3), 805-811. https://doi.org/10.1143/JPSJ.33.805
[8] Kaup, D. J., & Newell, A. C. (1978). An exact solution for a derivative nonlinear Schr¨odinger equation. Journal of Mathemati- cal Physics, 19(4), 798-801. https://doi.or g/10.1063/1.523737
[9] Tanaka, M. (1982). Nonlinear self- modulation problem of the Benjamin- Ono equation. Journal of the Physi- cal Society of Japan, 51(8), 2686-2692. https://doi.org/10.1143/JPSJ.51.2686
[10] Karpman, V. I., & Krushkal, E. M. (1969). Modulated waves in nonlinear dispersive me- dia. Soviet Journal of Experimental and The- oretical Physics, 28, 277.
[11] Muslu, G. M., & Erbay, H. A. (2005). Higher-order split-step Fourier schemes for the generalized nonlinear Schr¨odinger equa- tion.Mathematics and Computers in Simula- tion, 67(6), 581-595. https://doi.org/10.1 016/j.matcom.2004.08.002
[12] Irk, D., & Da˘(g), I(˙) . (2011). Quintic B-spline collocation method for the generalized non- linear Schr¨odinger equation. Journal of the Franklin Institute, 348(2), 378-392. https://doi.org/10.1016/j.jfranklin.2010.1 2.004
[13] Uddin, M., & Haq, S. (2013). On the numerical solution of generalized nonlinear Schrodinger equation using radial basis func- tions. Miskolc Mathematical Notes, 14(3), 1067-1084. https://doi.org/10.18514/M MN.2013.486
[14] Ba¸shan, A. (2019). A mixed methods ap- proach to Schr¨odinger equation: Finite dif- ference method and quartic B-spline based differential quadrature method. An Interna- tional Journal of Optimization and Control: Theories & Applications (IJOCTA) , 9(2), 223-235. https://doi.org/10.11121/ijo cta.01.2019.00709
[15] Bashan, A., Yagmurlu, N. M., Ucar, Y., & Esen, A. (2017). An effective approach to nu- merical soliton solutions for the Schr¨odinger equation via modified cubic B-spline differ- ential quadrature method. Chaos, Solitons & Fractals, 100, 45-56. https://doi.org/10.1 016/j.chaos.2017.04.038
[16] Ba¸shan, A., U¸car, Y., Murat Ya˘gmurlu, N., & Esen, A. (2018). A new perspective for quintic B-spline based Crank-Nicolson- differential quadrature method algorithm for numerical solutions of the nonlinear Schr¨odinger equation. The European Physi- cal Journal Plus, 133(1), 12. https://doi. org/10.1140/epjp/i2018-11843-1
[17] U¸car, Y., Ya˘gmurlu, M., & Ba¸shan, A.(2019). Numerical solutions and stability analysis of modified Burgers equation via modified cubic B-spline differential quadra- ture methods. Sigma Journal of Engineering and Natural Sciences, 37(1), 129-142.
[18] Ba¸shan, A., Ya˘gmurlu, N. M., U¸car, Y., & Esen, A. (2021). Finite difference method combined with differential quadra- ture method for numerical computation of the modified equal width wave equation. Numerical Methods for Partial Differential Equations, 37(1), 690-706. https://doi.or g/10.1002/num.22547
[19] Ba¸shan, A., U¸car, Y., Ya˘gmurlu, N. M., & Esen, A. (2016, October). Numerical so- lution of the complex modified Korteweg- de Vries equation by DQM. In Journal of Physics: Conference Series (Vol. 766, No. 1, p. 012028). IOP Publishing. https://doi. org/10.1088/1742-6596/766/1/012028
[20] Bellman, R., Kashef, B. G., & Casti, J.(1972). Differential quadrature: a technique for the rapid solution of nonlinear partial dif- ferential equations. Journal of Computational Physics, 10(1), 40-52. https://doi.org/10 .1016/0021-9991(72)90089-7
[21] Bellman, R., Kashef, B., Lee, E. S., & Va- sudevan, R. (1975). Differential quadrature and splines. Computers & Mathematics with Applications, 1(3-4), 371-376. https://doi. org/10.1016/0898-1221(75)90038-3
[22] Quan, J. R., & Chang, C. T. (1989). New insights in solving distributed system equa- tions by the quadrature method-I. Analysis. Computers & Chemical Engineering, 13(7), 779-788. https://doi.org/10.1016/0098 -1354(89)85051-3
[23] Quan, J. R., & Chang, C. T. (1989). New in- sights in solving distributed system equations by the quadrature method-II. Numerical ex- periments. Computers & Chemical Engineer- ing, 13(9), 1017-1024. https://doi.org/10 .1016/0098-1354(89)87043-7
[24] Shu, C., & Xue, H. (1997). Explicit computa- tion of weighting coefficients in the harmonic differential quadrature. Journal of Sound and Vibration, 204(3), 549-555. https://doi.or g/10.1006/jsvi.1996.0894
[25] Shu, C., & Wu, Y. L. (2007). Integrated ra- dial basis functions-based differential quad- rature method and its performance. Interna- tional Journal for Numerical Methods in Flu- ids, 53(6), 969-984. https://doi.org/10.1 002/fld.1315
[26] Yigit, G., & Bayram, M. (2017). Cheby- shev differential quadrature for numerical so- lutions of higher order singular perturbation problems. arXiv preprint arXiv:1705.09484.
[27] Shu, C. (1991). Generalized differential- integral quadrature and application to the simulation of incompressible viscous flows in- cluding parallel computation. University of Glasgow (United Kingdom).
[28] Shu, C., & Richards, B. E. (1992). Applica- tion of generalized differential quadrature to solve two-dimensional incompressible Navier- Stokes equations. International Journal for Numerical Methods in Fluids, 15(7), 791-798. https://doi.org/10.1002/fld.16501507 04
[29] Shu, C. (2000). Differential quadrature and its application in engineering. Springer Sci- ence & Business Media.
[30] Civan, F., & Sliepcevich, C. M. (1984). Differential quadrature for multi-dimensional problems. Journal of Mathematical Analysis and Applications, 101(2), 423-443. https:// doi.org/10.1016/0022-247X(84)90111-2
[31] Zong, Z., & Lam, K. Y. (2002). A localized differential quadrature (LDQ) method and its application to the 2D wave equation. Com- putational Mechanics, 29, 382-391. https: //doi.org/10.1007/s00466-002-0349-4
[32] Tomasiello, S. (2011). Numerical stability of DQ solutions of wave problems. Numerical Algorithms, 57, 289-312. https://doi.org/ 10.1007/s11075-010-9429-2
[33] Korkmaz, A., Aksoy, A. M., & Da˘g, I.(2011). Quartic B-spline differential quadra- ture method. International Journal of Non- linear Science, 11(4), 403-411.