AccScience Publishing / IJOCTA / Volume 14 / Issue 3 / DOI: 10.11121/ijocta.1471
RESEARCH ARTICLE

Intuitionistic fuzzy eigenvalue problem

Tahir Ceylan1*
Show Less
1 Department of Mathematics, University of Sinop, T¨urkiye
IJOCTA 2024, 14(3), 220–228; https://doi.org/10.11121/ijocta.1471
Submitted: 19 October 2023 | Accepted: 9 June 2024 | Published: 12 July 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The purpose of this paper is the study of the eigenvalues of the second order fuzzy boundary value problem (FBVP). By using the (alpha-beta)-level set of intuitionistic fuzzy numbers and Zadeh's extension principle, the FBVP is solved with the proposed method. Furthermore, a numerical example is illustrated and the advantages of the proposed approach are compared with other well-known methods such as the solutions based on the generalized Hukuhara derivative.

Keywords
Heaviside function
Eigenvalue
Fuzzy eigenfunction
Zadeh's extension principle
Conflict of interest
The authors declare they have no competing interests.
References

[1] Kaleva, O. (1987). Fuzzy Differential equations. Fuzzy Sets and Systems, (24), 301-317. https: //doi.org/10.1016/0165-0114(87)90029-7

[2] Seikkala, S. (1987). On the fuzzy initial value problem. Fuzzy Sets and Systems (24), 319-330. https://doi.org/10.1016/0165-0114(87)900 30-3

[3] Akg¨ul, A., Hashemi, M.S. & Seyfi, N. (2021). On the solutions of boundary value problems. An In- ternational Journal of Optimization and Control: Theories & Applications, 11(2), 199-205. https: //doi.org/10.11121/ijocta.01.2021.001015

[4] Yildirim Aksoy, N., C¸elik, E., & Dadas, M. E.(2023). The solvability of the optimal control problem for a nonlinear Schr¨odinger equation. An International Journal of Optimization and Con- trol: Theories & Applications, 13(2), 269-276. ht tps://doi.org/10.11121/ijocta.2023.1371

[5] Hanss, M. (2005). Applied fuzzy arithmetic: An introduction with engineering applications. Springer-Verlag, Berlin.

[6] Casasnovas, J. F. (2005). Averaging fuzzy biopolymers. Fuzzy Sets and Systems (152), 139-158. https://doi.org/10.1016/j.fss.2004.1 0.019

[7] Khastan, A., & Nieto, J.J. (2010). A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis, (72)9-10, 3583-3593. https://doi.org/10.1016/j.na.2009. 12.038

[8] Khalilpour, K. & Allahviranloo, T., (2012). A numerical method for two-point fuzzy boundary value problems. World Applied Sciences Journal,(16), 46-56.

[9] Gasilov, N., Amrahov, S¸.E., & Fatullayev, A.G.(2011). Linear differential equations with fuzzy boundary values. 2011 5th International Confer- ence on Application of Information and Commu- nication Technologies, 696-700. https://doi.or g/10.1109/ICAICT.2011.6111018

[10] Mondal, S.P., & Roy T.K. (2014). First order ho- mogeneous ordinary differential equation withini- tial value as triangular intuitionistic fuzzy num- ber. Journal of Uncertainty in Mathematics Sci- ence. https://doi.org/10.5899/2014/jums-0 0003

[11] G¨ultekin C¸itil, H. (2018) The examination of eigenvalues and eigenfunctions of the Sturm- Liouville fuzzy problem according to boundary conditions. International Journal of Mathemati- cal Combinatorics, (1), 51-60.

[12] G¨ultekin C¸itil, H. (2019). Comparisons of the ex- act and the approximate solutions of second-order fuzzy linear boundary value problems. Miskolc Mathematical Notes, (20)2, 823-837. https://do i.org/10.18514/MMN.2019.2627

[13] Ceylan, T., & Altınısık, N. (2018). Eigenvalue problem with fuzzy coefficients of boundary con- ditions. Scholars Journal of Physics, Mathematics and Statistics, (5)2, 187-193.

[14] Ceylan, T. (2023). Two point fuzzy boundary value problem with extension principle using Heaviside function. Journal of Universal Mathe- matics, (6)2, 131-141. https://doi.org/10.337 73/jum.1307156

[15] Akram, M., Muhammad, G., & Allahviranloo, T.(2023). Explicit analytical solutions of an incom- mensurate system of fractional differential equa- tions in a fuzzy environment. Information Sci- ences, (645), 1-27. https://doi.org/10.101 6/j.ins.2023.119372

[16] Akram, M., Muhammad, G., Allahviranloo, T., & Pedrycz, W. (2023). Incommensurate non- homogeneous system of fuzzy linear fractional dif- ferential equations using the fuzzy bunch of real functions. Fuzzy Sets and Systems, (473), 1-25. ht tps://doi.org/10.1016/j.fss.2023.108725

[17] Puri, M. L. & Ralescu, D. A. (1983). Differen- tials of fuzzy functions. Journal of Mathematical Analysis and Applications, (91), 552-558. https: //doi.org/10.1016/0022-247X(83)90169-5

[18] Kandel, A., & Byatt, W.J. (1978). Fuzzy differ- ential equations. Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, 1978.

[19] H¨ullermeier E. (1997) An approach to modelling and simulation of uncertain dynamical systems. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, (5)2, 117-138. ht tps://doi.org/10.1142/S0218488597000117

[20] Barros, L.C., Bassanezi, R.C., & Tonelli, P.A.(1997). On the continuity of the Zadeh’s exten- sion. In: Proceedings of Seventh IFSA World Congress, 1-6.

[21] Klir, G.J., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey. https: //doi.org/10.1109/45.468220

[22] Bede, B., & Stefanini, L. (2013). Generalized dif- ferentiability of fuzzy-valued functions. Fuzzy Sets and Systems, (230), 119-141. https://doi.org/ 10.1016/j.fss.2012.10.003

[23] Stefanini, L., & Bede, B. (2009). Generalized Hukuhara differentiability of interval-valued func- tions and interval differential equations. Nonlin- ear Analysis: Theory, Methods & Applications,(71)3-4, 1311-1328. https://doi.org/10.1016/ j.na.2008.12.005

[24] Atanassov, K.T. (1983). Intuitionistic Fuzzy Sets. VII ITKR’s Session. Sofia, Bulgarian.

[25] Zadeh, L.A. (1965). Fuzzy sets. Information and Control, (8)65, 338-353. https://doi.org/10.1 016/S0019-9958(65)90241-X

[26] Atanassov, K.T. (1999). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, (20)65, 87-96. https: //doi.org/10.1016/S0165-0114(86)80034-3

[27] Atanassov, K.T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Germany: Physica- Verlag, Heidelberg. https://doi.org/10.100 7/978-3-7908-1870-3

[28] Melliani, S., & Chadli, L.S. (2001). Introduction to intuitionistic fuzzy partial differential equa- tions. Notes on Intuitionistic Fuzzy Sets, 7(3), 39- 42.

[29] Allahviranloo, T., & Abbasbandy, S. (2002). Nu- merical solution of fuzzy differential equation by Runge-Kutta method and the intutionistic treat- ment. Notes on Intuitionistic Fuzzy Sets, 8(3), 45- 53.

[30] Nirmala, V., & Pandian, S.C. (2015). Numeri- cal approach for solving intuitionistic fuzzy differ- ential equation. Applied Mathematical Sciences,(9)367, 3337-3346 https://doi.org/10.12988 /ams.2015.54320

[31] G¨ultekin C¸itil, H. (2020). The problem with fuzzy eigenvalue parameter in one of the boundary con- ditions. An International Journal of Optimization and Control: Theories & Applications, (10)2, 159-165. https://doi.org/10.11121/ijocta.01.2 020.00947

[32] Atanassov, K.T. (2007). On Intuitionistic Fuzzy Versions of L. Zadeh’s Extension Principle. Notes on Intuitionistic Fuzzy Sets, (13)65, 33-36.

[33] Akin, O., & Bayeg, S. (2019). Intuitionistic fuzzy initial value problems an application. Hacettepe Journal of Mathematics and Statistics, (748)6, 1682 - 1694.

[34] Titchmarsh, E.C. (1962). Eigenfunction expan- sions associated with second-order differential equations I. 2nd edition, Oxford University Press, London.

[35] Ceylan, T., & Altınısık, N. (2021). Different solu tion method for fuzzy boundary value problem with fuzzy parameter. International Journal of Mathematical Combinatorics, (1), 11-29.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing