Intuitionistic fuzzy eigenvalue problem
The purpose of this paper is the study of the eigenvalues of the second order fuzzy boundary value problem (FBVP). By using the (alpha-beta)-level set of intuitionistic fuzzy numbers and Zadeh's extension principle, the FBVP is solved with the proposed method. Furthermore, a numerical example is illustrated and the advantages of the proposed approach are compared with other well-known methods such as the solutions based on the generalized Hukuhara derivative.
[1] Kaleva, O. (1987). Fuzzy Differential equations. Fuzzy Sets and Systems, (24), 301-317. https: //doi.org/10.1016/0165-0114(87)90029-7
[2] Seikkala, S. (1987). On the fuzzy initial value problem. Fuzzy Sets and Systems (24), 319-330. https://doi.org/10.1016/0165-0114(87)900 30-3
[3] Akg¨ul, A., Hashemi, M.S. & Seyfi, N. (2021). On the solutions of boundary value problems. An In- ternational Journal of Optimization and Control: Theories & Applications, 11(2), 199-205. https: //doi.org/10.11121/ijocta.01.2021.001015
[4] Yildirim Aksoy, N., C¸elik, E., & Dadas, M. E.(2023). The solvability of the optimal control problem for a nonlinear Schr¨odinger equation. An International Journal of Optimization and Con- trol: Theories & Applications, 13(2), 269-276. ht tps://doi.org/10.11121/ijocta.2023.1371
[5] Hanss, M. (2005). Applied fuzzy arithmetic: An introduction with engineering applications. Springer-Verlag, Berlin.
[6] Casasnovas, J. F. (2005). Averaging fuzzy biopolymers. Fuzzy Sets and Systems (152), 139-158. https://doi.org/10.1016/j.fss.2004.1 0.019
[7] Khastan, A., & Nieto, J.J. (2010). A boundary value problem for second order fuzzy differential equations. Nonlinear Analysis, (72)9-10, 3583-3593. https://doi.org/10.1016/j.na.2009. 12.038
[8] Khalilpour, K. & Allahviranloo, T., (2012). A numerical method for two-point fuzzy boundary value problems. World Applied Sciences Journal,(16), 46-56.
[9] Gasilov, N., Amrahov, S¸.E., & Fatullayev, A.G.(2011). Linear differential equations with fuzzy boundary values. 2011 5th International Confer- ence on Application of Information and Commu- nication Technologies, 696-700. https://doi.or g/10.1109/ICAICT.2011.6111018
[10] Mondal, S.P., & Roy T.K. (2014). First order ho- mogeneous ordinary differential equation withini- tial value as triangular intuitionistic fuzzy num- ber. Journal of Uncertainty in Mathematics Sci- ence. https://doi.org/10.5899/2014/jums-0 0003
[11] G¨ultekin C¸itil, H. (2018) The examination of eigenvalues and eigenfunctions of the Sturm- Liouville fuzzy problem according to boundary conditions. International Journal of Mathemati- cal Combinatorics, (1), 51-60.
[12] G¨ultekin C¸itil, H. (2019). Comparisons of the ex- act and the approximate solutions of second-order fuzzy linear boundary value problems. Miskolc Mathematical Notes, (20)2, 823-837. https://do i.org/10.18514/MMN.2019.2627
[13] Ceylan, T., & Altınısık, N. (2018). Eigenvalue problem with fuzzy coefficients of boundary con- ditions. Scholars Journal of Physics, Mathematics and Statistics, (5)2, 187-193.
[14] Ceylan, T. (2023). Two point fuzzy boundary value problem with extension principle using Heaviside function. Journal of Universal Mathe- matics, (6)2, 131-141. https://doi.org/10.337 73/jum.1307156
[15] Akram, M., Muhammad, G., & Allahviranloo, T.(2023). Explicit analytical solutions of an incom- mensurate system of fractional differential equa- tions in a fuzzy environment. Information Sci- ences, (645), 1-27. https://doi.org/10.101 6/j.ins.2023.119372
[16] Akram, M., Muhammad, G., Allahviranloo, T., & Pedrycz, W. (2023). Incommensurate non- homogeneous system of fuzzy linear fractional dif- ferential equations using the fuzzy bunch of real functions. Fuzzy Sets and Systems, (473), 1-25. ht tps://doi.org/10.1016/j.fss.2023.108725
[17] Puri, M. L. & Ralescu, D. A. (1983). Differen- tials of fuzzy functions. Journal of Mathematical Analysis and Applications, (91), 552-558. https: //doi.org/10.1016/0022-247X(83)90169-5
[18] Kandel, A., & Byatt, W.J. (1978). Fuzzy differ- ential equations. Proceedings of the International Conference on Cybernetics and Society, Tokyo, Japan, 1978.
[19] H¨ullermeier E. (1997) An approach to modelling and simulation of uncertain dynamical systems. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, (5)2, 117-138. ht tps://doi.org/10.1142/S0218488597000117
[20] Barros, L.C., Bassanezi, R.C., & Tonelli, P.A.(1997). On the continuity of the Zadeh’s exten- sion. In: Proceedings of Seventh IFSA World Congress, 1-6.
[21] Klir, G.J., & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey. https: //doi.org/10.1109/45.468220
[22] Bede, B., & Stefanini, L. (2013). Generalized dif- ferentiability of fuzzy-valued functions. Fuzzy Sets and Systems, (230), 119-141. https://doi.org/ 10.1016/j.fss.2012.10.003
[23] Stefanini, L., & Bede, B. (2009). Generalized Hukuhara differentiability of interval-valued func- tions and interval differential equations. Nonlin- ear Analysis: Theory, Methods & Applications,(71)3-4, 1311-1328. https://doi.org/10.1016/ j.na.2008.12.005
[24] Atanassov, K.T. (1983). Intuitionistic Fuzzy Sets. VII ITKR’s Session. Sofia, Bulgarian.
[25] Zadeh, L.A. (1965). Fuzzy sets. Information and Control, (8)65, 338-353. https://doi.org/10.1 016/S0019-9958(65)90241-X
[26] Atanassov, K.T. (1999). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, (20)65, 87-96. https: //doi.org/10.1016/S0165-0114(86)80034-3
[27] Atanassov, K.T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Germany: Physica- Verlag, Heidelberg. https://doi.org/10.100 7/978-3-7908-1870-3
[28] Melliani, S., & Chadli, L.S. (2001). Introduction to intuitionistic fuzzy partial differential equa- tions. Notes on Intuitionistic Fuzzy Sets, 7(3), 39- 42.
[29] Allahviranloo, T., & Abbasbandy, S. (2002). Nu- merical solution of fuzzy differential equation by Runge-Kutta method and the intutionistic treat- ment. Notes on Intuitionistic Fuzzy Sets, 8(3), 45- 53.
[30] Nirmala, V., & Pandian, S.C. (2015). Numeri- cal approach for solving intuitionistic fuzzy differ- ential equation. Applied Mathematical Sciences,(9)367, 3337-3346 https://doi.org/10.12988 /ams.2015.54320
[31] G¨ultekin C¸itil, H. (2020). The problem with fuzzy eigenvalue parameter in one of the boundary con- ditions. An International Journal of Optimization and Control: Theories & Applications, (10)2, 159-165. https://doi.org/10.11121/ijocta.01.2 020.00947
[32] Atanassov, K.T. (2007). On Intuitionistic Fuzzy Versions of L. Zadeh’s Extension Principle. Notes on Intuitionistic Fuzzy Sets, (13)65, 33-36.
[33] Akin, O., & Bayeg, S. (2019). Intuitionistic fuzzy initial value problems an application. Hacettepe Journal of Mathematics and Statistics, (748)6, 1682 - 1694.
[34] Titchmarsh, E.C. (1962). Eigenfunction expan- sions associated with second-order differential equations I. 2nd edition, Oxford University Press, London.
[35] Ceylan, T., & Altınısık, N. (2021). Different solu tion method for fuzzy boundary value problem with fuzzy parameter. International Journal of Mathematical Combinatorics, (1), 11-29.