AccScience Publishing / IJOCTA / Volume 14 / Issue 1 / DOI: 10.11121/ijocta.1392
RESEARCH ARTICLE

On the upper bounds of Hankel determinants for some subclasses of univalent functions associated with sine functions

Muhammet Kamali1* Alina Riskulava1
Show Less
1 Department of Mathematics, Faculty of Sciences, Kyrgyz-T¨urkish Manas University, Chyngz Aitmatov Avenue Bishkek, Kyrgyz Recuplic
IJOCTA 2024, 14(1), 41–49; https://doi.org/10.11121/ijocta.1392
Submitted: 13 April 2023 | Accepted: 15 July 2023 | Published: 12 December 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Let a normalized analytic function be given on the open unit disk. In this paper, we define and consider some familiar subsets of analytic functions associated with sine functions in the region of unit disk on the complex plane. For these classes, we aim to find the upper bounds of the modules of the Hankel determinants obtained from the coefficients of the functions belonging to some classes defined by subordination.

Keywords
Analytic functions
Coefficient estimates
Subordination
Hankel determinant
Starlike functions
Convex function
Sine function
Conflict of interest
The authors declare they have no competing interests.
References

[1] Bieberbach, L. (1916). U(¨)ber die Koeffizienten derjenigen Pottenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preussische Akademie der Wissenschaften, 138, pp. 940-955.

[2] De-Branges, L. (1985). A proof of the Beiberbach conjecture. Acta Mathematica, 154, 137-152.

[3] Cho, N.E., Kumar, V., Kumar, S.S. & Ravichandran, V. (2019). Radius problems for starlike functions associated with the sine function. Bulletin of the Iranian Mathematical Society, 45, 213–232.

[4] Pommerenke, C. (1975). On the coefficients and Hankel determinants of univalent functions. Journal of the London Mathematical Society, 41, 111–122.

[5] Pommerenke, C. (1967). On the Hankel determinants of univalent functions. Mathematika, 14, 108–112.

[6] Janteng, A., Halim, S.A. & Darus, M. (2006). Coefficient inequality for a function whose derivative has a positive real part. Journal of Inequalities in Pure and Applied Mathematics, 7, 1-5.

[7] Janteng, A., Halim, S.A. & Darus, M. (2007). Hankel determinant for starlike and convex functions. International Journal of Mathematical Analysis, 1, 619-625.

[8] Babalola, K.O. (2010). On Hankel determinants for some classes of univalent functions. Inequality Theory and Applications, 6, 1-7.

[9] Altınkaya, S. & Yal¸cın, S. (2016). Third Hankel determinant for Bazilevic functions. Advances in Mathematics, 5, 91-96.

[10] Bansal, D., Maharana, S. & Prajapat, J.K. (2015). Third order Hankel determinant for certain univalent functions. Journal of Korean Mathematical Society, 52, 1139–1148.

[11] Krishna, D.V., Venkateswarlu, B. & RamReddy, T. (2015). Third Hankel determinant for bounded turning functions of order alpha. Journal of the Nigerian Mathematical Society, 34, 121–127.

[12] Raza, M. & Malik, S.N. (2013). Upper bound of third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. Journal of Inequalities and Applications, 412.

[13] Shanmugam, G., Stephen, B.A. & Babalola, K.O.(2014). Third Hankel determinant for α- starlike functions. Gulf Journal of Mathematics, 2, 107–113,

[14] Zhang, H.Y., Tang, H. & Ma, L.N. (2017). Upper bound of third Hankel determinant for a class of analytic functions. Pure and Applied Mathematics, 33(2), 211- 220.

[15] Breaz, D., Cata¸s, A. & Cotırla, L. (2022). On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential function. Analele Stiintifice ale Universitatii ‘’Ovidius Constanta. Seria Mathematica, 30(1), 75-89.

[16] Orhan, H., C¸a˘glar, M. & Cotırla, L. (2023). Third Hankel determinant for a subfamily of holomorphic functions related with lemniscate of Bernoulli. Mathematics, 11, 1147.

[17] Zaprawa, P. (2019). Third Hankel determinants for subclasses of univalent functions. Mediterranean Journal of Mathematics, 14, 19.

[18] Kowalczyk, B., Lecko, A. & Sim,Y.J. (2018). The sharp bound of the Hankel determinant of the third kind for convex functions. Bulletin of the Australian Mathematical Society, 97, 435–445.

[19] Lecko,A., Sim, Y.J. & Smiarowska, B. (2018).The sharp bound of the Hankel determinant of the third kind for starlike functions of order. Complex Analysis and Operator Theory, 1–8.

[20] Arif, M., Raza, M., Tang, H., Hussain, S. & Khan, H. (2019). Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Mathematics, 17, 1615-1630.

[21] Shi, L., Ali, I., Arif ,M., Cho ,N.E., Hussain ,S. & Khan, H. (2019). A Study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7, 418.

[22] Zaprawa, P. (2019). Hankel Determinant for univalent functions related to the exponential function. Symmetry, 11, 1211.

[23] Salagean, G. (1983). Subclasses of Univalent Functions. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1013, 362-372.

[24] Al-Oboudi, F.M. (2004). On univalent functions defined by a generalized Salagean operator. Indian Journal of Mathematics and Mathematical Sciences, 25-28, 1429-1436.

[25] Oros, I.O. & Oros, G. (2008). On a class of univalent functions defined by a generalized Salagean operator. Complex Variables and Elliptic Equations, 53(9), 869-877.

[26] Caratheodory, C. (1911). Uber den variabilitatsbereich der Fourier’schen Konstanten Von Positiven harmonischen. Rendiconti del Circolo Mathematico di Palermo, 32, 193–217.

[27] Duren, P.L. (1983). Univalent functions, (Springer-Verlag), 114–115. Mathematicheskii Sbornik, 37 (79), 471–476.

[28] Libera, J. & Zlotkiewicz, E.J. (1982). Early coefficients of the inverse of a regular convex Function. Proceedings of American Mathematical Society, 85(2), 225–230.

[29] Libera, J. & Zlotkiewicz, E.J. (1983). Coefficient bounds for the inverse of a function with derivative in P. Proceedings of American Mathematical Society, 87(2), 251–257,

[30] Ayınla, R.O.B. & Risikat, A. (2021). Toeplitz determinants for a subclass of analytic functions. Journal of Progressive Research in Mathematics, 18(1), 99-106.

[31] Keough, F. & Merkes, E. (1996). A coefficient inequality for certain subclasses of analytic functions. Proceedings of American Mathematical Society, 20, 8–12.

[32] Pommerenke, C. (1975). Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck & Ruprecht, Gottingen, vol. 25.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing