AccScience Publishing / IJOCTA / Volume 13 / Issue 2 / DOI: 10.11121/ijocta.2023.1326
RESEARCH ARTICLE

Regional enlarged controllability of a fractional derivative of an output linear system

Rachid Larhrissi1 Mustapha Benoudi1*
Show Less
1 MACS Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes 50000, Morocco
IJOCTA 2023, 13(2), 236–243; https://doi.org/10.11121/ijocta.2023.1326
Received: 3 October 2022 | Accepted: 20 June 2023 | Published online: 29 July 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This new research aims to extend the topic of the enlarged controllability of a fractional output linear system. Thus, we characterize the optimal control by two methods, ensuring that the Riemann-Liouville fractional derivative of the final state of the considered system lies between two given functions on a subregion of the evolution domain. Firstly, we transform the considered problem into the saddle point using the Lagrangian multiplier approach. Then, in the second one, we provide the technique of the subdifferential, which allows us to present the cost-explicit formula of the minimum energy control. Moreover, we construct an algorithm of Uzawa type to illustrate the theoretical results obtained through numerical simulations.

Keywords
Regional controllability
Fractional derivatives
Lagrangian method
Optimal control
Conflict of interest
The authors declare they have no competing interests.
References

[1] Oldham, K., & Spanier, J. (1974). The Fractional Calculus Theory and Applications of Differentia- tion and Integration to Arbitrary Order. Elsevier.

[2] El Jai A., & El Yacoubi, S. (1993). On the num- ber of actuators in parabolic system. International Journal of Applied Mathematics and Computer Science, 3(4), 673–686.

[3] Zerrik, E. (1994). Controlabilit´e et observabilit´e regionales d’une classe de systemes distribues. PhD thesis Perpignan.

[4] El Jai, A., Simon, C., & Zerrik, E., Pritchard, J. (1995). Regional controllability of distributed parameter systems. International Journal of Con- trol, 62(6), 1351–1365.

[5] Zerrik, E., Boutoulout, A., & El Jai A. (2002). Ac- tuators and regional boundary controllability of parabolic systems. International Journal of Sys- tems Science, 31(1), 73–82.

[6] Zerrik, E., Boutoulout, A., & Bourray, H. (2001). Boundary strategic actuators. Sensors and Actu- ators A: Physical, 94(3), 197–203.

[7] Zerrik, E., & Ghafrani, F. (2002). Minimum en- ergy control subject to output constraints: nu- merical approach. IEE Proceedings-Control The- ory and Applications, 149(1), 105–110.

[8] Zerrik, E., & Ghafrani, F. (2003). Regional gradient-constrained control problem. Approaches and simulations. Journal of dynamical and control systems, 9(4), 585–599.

[9] Zerrik, E., Boutoulout, A., & Kamal, A. (1996). Regional gradient controllability of parabolic sys- tems. International Journal of Applied Mathemat- ics and Computer Science, 9(4), 767–787.

[10] Benoudi, M., & Larhrissi, R. (2023). Fractional controllability of linear hyperbolic systems. Inter- national Journal of Dynamics and Control, 11(3), 1375-1385.

[11] Xie, J., & Dubljevic, S. (2019). Discrete-time Kalman filter design for linear infinite-dimensional systems. Processes, 7(7), 451.

[12] Pazy, A. (1983). Semi-Groups of Linear Opera- tors and Applications to Partial Differential Equa- tions. Springer Verlag, New York.

[13] Podlubny, I., & Chen, Q. (2007). Adjoint frac- tional differential expressions and operators. In- ternational Design Engineering Technical Confer- ences and Computers and Information in Engi- neering Conference, 4806, 1385–1390.

[14] Miller, S., & Ross, B. (1993). An Introduction to the Fractional Calculus and Fractional Differen- tial Equations. Wiley.

[15] Ioffe, A. D. (2012). On the theory of sub differen- tials. Advances in Nonlinear Analysis, 1, 47-120.

[16] Labrousse, J-Ph., M’bekhta, M. (1992). Les op´erateurs points de continuit´e pour la conorme et l’inverse de Moore-Penrose. Houston Journal of Mathematics, 18(1), 7-23.

[17] Yosida, K. (1980). Functional Analysis. Springer Verlag, Berlin-Heidelberg, New York.

[18] Fortin, M., & Glowinski, R. (2000). Augmented Lagrangian Methods: Applications to the Numer- ical Solution of Boundary Value Problems. Else- vier, North-Holland-Amsterdam, New York, Ox- ford.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing