On the regional boundary observability of semilinear time-fractional systems with Caputo derivative
This paper considers the regional boundary observability problem for semilinear time-fractional systems. The main objective is to reconstruct the initial state on a subregion of the boundary of the evolution domain of the considered fractional system using the output equation. We proceed by providing a link between the regional boundary observability of the considered semilinear system on the desired boundary subregion, and the regional observability of its linear part, in a well chosen subregion of the evolution domain. By adding some assumptions on the nonlinear term appearing in the considered system, we give the main theorem that allows us to reconstruct the initial state in the well-chosen subregion using the Hilbert uniqueness method (HUM). From it, we recover the initial state on the boundary subregion. Finally, we provide a numerical example that backs up the theoretical results presented in this paper with a satisfying reconstruction error.
[1] Curtain, R.F., & Zwart, H. (1995). An Introduc- tion to Infinite-Dimensional Linear Systems The- ory. Springer-Verlag, New York.
[2] El Jai, A. (1997). Capteurs et actionneurs dans l’analyse des syst`emes distribu´es. Elsevier Masson, Paris.
[3] Amouroux, M., El Jai A., & Zerrik, E. (1994). Re- gional observability of distributed systems. Inter- national Journal of Systems Science, 25(2), 301- 313.
[4] El Jai, A., Somon, M.C., Zerrik, E. & Pritchard, A.J. (1995). Regional controllability of distributed parameter systems. International Journal of Con- trol, 62(6), 1351-1365.
[5] El Jai, A., Afifi, L. & Zerrik, E. (2012). Sys- tems Theory: Regional Analysis of Infinite Di- mensional Linear Systems. Presses Universitaires de Perpignan, Perpignan.
[6] Boutoulout, A., Bourray, H. & El Alaoui, F.Z.(2013). Boundary gradient observability for semi- linear parabolic systems: sectorial approach. Mathematical Sciences Letters, 2(1), 45-54.
[7] Boutoulout, A., Bourray, H., El Alaoui, F.Z., & Benhadid, S. (2014). Regional observability for distributed semi-linear hyperbolic systems. Inter- national Journal of Control, 87(5), 898-910.
[8] Zguaid, K., & El Alaoui, F.Z. (2022). Regional boundary observability for Riemann–Liouville lin- ear fractional evolution systems. Mathematics and Computers in Simulation, 199, 272-286.
[9] Baleanu, D., & Lopes, A.M. (2019). Handbook of Fractional Calculus with Applications: Appli- cations in Engineering, Life and Social Sciences, Part A. De Gruyter, Berlin, Boston.
[10] Petr´aˇs, I. (2019). Handbook of Fractional Calcu- lus with Applications: Applications in Control. De Gruyter, Berlin, Boston.
[11] Tarasov, V.E. (2019). Handbook of Fractional Cal- culus with Applications: Applications in Physics, Part A. De Gruyter, Berlin, Boston.
[12] Skovranek, T., & Despotovic, V. (2019). Sig- nal prediction using fractional derivative models. In: Handbook of Fractional Calculus with Applica- tions: Applications in Engineering, Life and So- cial Sciences, Part B. De Gruyter, Berlin, Boston, 179–206.
[13] Sahijwani, N., & Sukavanam, N. (2023). Approxi- mate controllability for systems of fractional non- linear differential equations involving Riemann- Liouville derivatives. An International Journal of Optimization and Control: Theories & Applica- tions, 13(1), 59-67.
[14] Pandey, R., Shukla, C., Shukla, A., Upadhyay, A., & Singh, A.K. (2023). A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations. An International Journal of Optimization and Control: Theories & Applications, 13(1), 130–138.
[15] Zguaid, K., El Alaoui, F.Z., & Torres D.F.M.(2023). Regional gradient observability for fractional differential equations with Ca- puto time-fractional derivatives. Interna- tional Journal of Dynamics and Control. https://doi.org/10.1007/s40435-022-01106-0
[16] Zguaid, K., & El Alaoui, F.Z. (2022). Regional boundary observability for linear time-fractional systems. Partial Differential Equations in Applied Mathematics, 6, 100432.
[17] Zguaid, K., El Alaoui, F.Z., & Boutoulout, A.(2021). Regional Observability of Linear Frac- tional Systems Involving Riemann-Liouville Frac- tional Derivative. In: Z. Hammouch, H. Dutta, S. Melliani, and M. Ruzhansky, eds. Nonlinear Analysis: Problems, Applications and Computa- tional Methods, Springer International Publishing, 164–178.
[18] Zguaid, K., El Alaoui, F.Z., & Boutoulout, A.(2021). Regional observability for linear time frac- tional systems. Mathematics and Computers in Simulation, 185, 77–87.
[19] Zguaid, K., & El Alaoui, F.Z. (2023). Regional boundary observability for semilinear fractional systems with Riemann-Liouville derivative. Nu- merical Functional Analysis and Optimization, 44(5), 420–437.
[20] El Alaoui, F.Z., Boutoulout, A., & Zguaid, K.(2021). Regional reconstruction of semilinear Ca- puto type time-fractional systems using the ana- lytical approach. Advances in the Theory of Non- linear Analysis and its Application, 5(4), 580-599.
[21] Boutoulout, A., Bourray, H., & El Alaoui, F.Z.(2010). Regional boundary observability for semi- linear systems approach and simulation. Interna- tional Journal of Mathematical Analysis, 4(24), 1153–1173.
[22] Boutoulout, A., Bourray, H., & El Alaoui, F.Z.(2015). Regional boundary observability of semi- linear hyperbolic systems: sectorial approach. IMA Journal of Mathematical Control and Infor- mation, 32(3), 497–513.
[23] Lions, J.L., & Magenes, E. (1972). Non- Homogeneous Boundary Value Problems and Ap- plications Vol. 1. Springer-Verlag, Berlin.
[24] Mu, J., Ahmad, B., & Huang, S. (2017). Existence and regularity of solutions to time-fractional dif- fusion equations. Computers & Mathematics with Applications, 73(6), 985–996.
[25] Ge, F., Quan, Y.C., & Kou, C. (2018). Regional Analysis of Time-Fractional Diffusion Processes. Springer International Publishing, Switzerland.
[26] Tiomela, R.F., Norouzi, F., N’gu´er´ekata, G., & Mophou, G. (2020). On the stability and stabi- lization of some semilinear fractional differential equations in Banach Spaces. Fractional Differen- tial Calculus, 10(2), 267–290.
[27] Gottlieb, D., & Orszag, S.A. (1977). Numerical Analysis of Spectral Methods. Society for Indus- trial and Applied Mathematics, Philadelphia.
[28] Garrappa, R. (2018). Numerical solution of frac- tional differential equations: a survey and a soft- ware tutorial. Mathematics, 6(2), 16.