AccScience Publishing / IJOCTA / Volume 13 / Issue 1 / DOI: 10.11121/ijocta.2023.1072
RESEARCH ARTICLE

Observer design for a class of irreversible port Hamiltonian systems

Saida Zenfari1* Mohamed Laabissi1 Mohammed Elarbi Achhab1
Show Less
1 Department of Mathematics, Faculty of sciences, University Chouaib Doukkali 24000 El Jadida, Morocco
IJOCTA 2023, 13(1), 26–34; https://doi.org/10.11121/ijocta.2023.1072
Submitted: 8 January 2021 | Accepted: 2 September 2022 | Published: 23 January 2023
© 2023 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper we address the state estimation problem of a particular class of irreversible port Hamiltonian systems (IPHS), which are assumed to be partially observed. Our main contribution consists to design an observer such that the augmented system (plant + observer) is strictly passive. Under some additional assumptions, a Lyapunov function is constructed to ensure the stability of the coupled system. Finally, the proposed methodology is applied to the gas piston system model. Some simulation results are also presented.

Keywords
Irreversible port Hamiltonian systems
observer design
passivity
state estimation
gas piston system
Conflict of interest
The authors declare they have no competing interests.
References

[1] Duindam, V., Macchelli, A., Stramigioli, S., & Bruyninckx, H. (2009). Modeling and Control of Complex Physical Systems-The Port-Hamiltonian Approach. Springer-Verlag, Berlin, Germany.

[2] Maschke, B., Van der Schaft, A., & Breed- veld, P.C. (1992). An intrinsic Hamilton- ian formulation of network dynamics: Non- standard Poisson structures and gyrators. Journal of the Franklin Institute, 329(5), 923- 966.

[3] Van der Schaft, A., & Maschke, B. (1995).The Hamiltonian formulation of energy con- serving physical systems with external ports. Arch, fur Elektron, Ubertragungstech. 49(5-6), 362-371.

[4] Van der Schaft, A., & Jeltsema, D. (2014). Port-Hamiltonian Systems Theory: An Intro- ductory Overview. Foundations and Trends® in Systems and Control, 173-378.

[5] Dorfler, F., Johnsen, J., & Allg¨ower, F.(2009). An introduction to interconnection and damping assignment passivity-based con- trolin process engineering. Journal of Process Control, 19, 1413-1426.

[6] Hangos, K.M., Bokor, J., & Szederk´enyi, G.(2001). Hamiltonian view on process systems. AIChE Journal. 47, 1819-1831.

[7] Ramirez, H., Maschke, B., & Sbarbaro, D. (2013). Irreversible port-Hamiltonian sys- tems: A general formulation of irreversible processes with application to the CSTR.Chemical Engineering Science, 89(11), 223- 234.

[8] Biedermann, B., & Meurer, T. (2021). Ob- server design for a class of nonlinear systems combining dissipativity with interconnection and damping assignment. International Jour- nal of Robust and Nonlinear Control, 31(9), 4064-4080.

[9] Karagiannis, D., & Astolfi, A. (2005). Nonlin- ear observer design using invariant manifolds and applications. in Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 7775-7780.

[10] Shim, H., Seo, J.H., & Teel, A.R. (2003). Nonlinear observer design via passivation of error dynamics. Automatica, 39(5), 885-892.

[11] Venkatraman, A., & Van der Schaft, A.(2010). Full order observer design for a class of port Hamiltonian systems. Automatica, 46(3), 555-561.

[12] Zenfari, S., Laabissi, M., & Achhab, M.E.(2022). Proportional observer design for port Hamiltonian systems using the contraction analysis approach. International Journal of Dynamics and Control, 10(2), 403-408.

[13] Ramirez, H., Le Gorrec, Y., Maschke, B., & Couenne, F. (2016). On the passivity based control of irreversible processes: A port- Hamiltonian approach. Automatica, 64, 105- 111.

[14] Zenfari, S., Laabissi, M., & Achhab, M.E.(2019). Passivity Based Control method for the diffusion process. IFAC-PapersOnLine, 52(7), 80-84.

[15] Villalobos Aguilera,I. (2020). Passivity based control of irreversible port Hamiltonian sys- tem: An energy shaping plus damping in- jection approach. Master Thesis, Universidad T´ecnica Federico Santa Mar´ıa.

[16] Ramirez, H., Maschke, B., & Sbarbaro, D.(2013). Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach. European Journal of Control, 19(6), 513-520.

[17] Lieb, E.H., & Yngvason, J. (2013). The entropy concept for non-equilibrium states. Proceedings of the Royal Society A: Mathe- matical, Physical, and Engineering Sciences, 469.

[18] Byrnes, C.I., Isidori, A., & Willems, J.C.(1991). Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Au- tomatic Control, 36(11), 1228-1240.

[19] Van der Schaft, A. (2000). L2- gain and passivity techniques in nonlinear control. Springer, Berlin.

[20] Agarwal, P., & Choi, J. (2016). Fractional calculus operators and their image formulas. Journal of the Korean Mathematical Society, 53(5), 1183-1210.

[21] Baleanu, D., Sajjad, S.S., Jajarmi, A., & Defterli, O. (2021). The fractional dynamics of a linear triatomic molecule. Romanian Re- ports in Physics, 73, 105.

[22] Baleanu, D., Sajjad, S.S., Asad, J,H., Ja- jarmi, A., & Estiri, E. (2021). Hyperchaotic behaviors, optimal control, and synchroniza- tion of a nonautonomous cardiac conduction system. Advances in Difference Equations, 1, 1-24.

[23] Chu, Y.M., Ali Shah, N., Agarwal, P., Chung, J.D. (2021). Analysis of fractional multi-dimensional Navier-Stokes equation. Advances in Difference Equations, 91(2021).

[24] Jajarmi, A., Baleanu, K., Vahid, Z., & Mobayen, S. (2022). A general fractional for- mulation and tracking control for immuno- genictumor dynamics. Mathematical Methods in the Applied Sciences, 45(2), 667-680.

[25] Quresh, S., & Jan, R. (2021). Modeling of measles epidemic with optimized frac- tional order under Caputo differential opera- tor. Chaos, Solitons & Fractals, 145, 110766.

[26] Quresh, S., Chang, M.M., & Shaikh, A.A.(2021). Analysis of series RL and RC circuits with time-invariant source using truncated M, Atangana beta and conformable derivatives. Journal of Ocean Engineering and Science, 6(3), 217-227.

[27] Wang, B., Jahanshahi, H., Volos, C., Bekiros, S., Khan, M.A., Agarwal, P., & Aly, A.A. (2021). A new RBF neural network-based fault-tolerant active control for fractional time-delayed systems. Electron- ics. 10(12):1501.

[28] Yusuf, A., Qureshi, S., & Mustapha, U.T.(2022). Fractional Modeling for Improving Scholastic Performance of Students with Op- timal Control. International Journal of Ap- plied and Computational Mathematics, 8(1), 1-20.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing