AccScience Publishing / IJOCTA / Volume 12 / Issue 2 / DOI: 10.11121/ijocta.2022.1181
RESEARCH ARTICLE

Rotor design optimization of a synchronous generator by considering the damper winding effect to minimize THD using grasshopper optimization algorithm

Aslan Deniz Karaoglan1* Deniz Perin2
Show Less
1 Department of Industrial Engineering, Balikesir University, Turkey
2 Department of R&D, ISBIR Electric Company, Turkey
IJOCTA 2022, 12(2), 90–98; https://doi.org/10.11121/ijocta.2022.1181
Submitted: 16 October 2021 | Accepted: 31 January 2022 | Published: 13 June 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

The aim of this study is to calculatethe optimum factor levels for the design parameters namely slot pitch, center slot pitch, and damper width to keep the magnetic flux density distribution in a desired range while minimizing the total harmonic distortion (THD). For this purpose, the numerical simulations are performed in the Maxwell environment. Then by the aid ofregression modeling over this simulation results; the mathematical equations between the responses (THD and magnetic flux density distribution) and the factors are calculated. After the modeling phase, grasshopper optimization algorithm (GOA) is run through these regression equations to determine the optimum values of the rotor design parameters (factors). The confirmations are also performed in the Maxwell environment and the result indicated that the THD is minimized and the magnetic flux density distribution on the teeth is kept in a desired range.

Keywords
Grasshopper optimization algorithm
Rotor design optimization
Synchronous generator
Total harmonic distortion
Damper winding
Conflict of interest
The authors declare they have no competing interests.
References

[1] De La Rosa, F. (2006). Harmonics and Power  Systems. Taylor & Francis, Hazelwood, Missouri,  USA.

[2] Arrillaga, J., & Watson, N.R. (2003). Power System  Harmonics (2nd ed.). John Wiley & Sons, USA. 

[3] Bakshi, U.A., & Godse, A.P. (2008). Electronic  Circuits and Applications (3rd ed.). Technical  Publications Pune, Pune, India.

[4] Matsuki, J., Katagi, T., & Okada, T. (1992). Effect  of slot ripples on damper windings of synchronous  machines. Proc. of the IEEE International  Symposium on Industrial Electronics, 2, 864-865,  Xian, China.

[5] Matsuki, J., Katagi, T., & Okada, T. (1994).  Damper windings phenomena of synchronous  machines during system oscillations. IEEE  Transactions on Energy Conversion, 9(2), 376-382. 

[6] Vetter, W., & Reichert, K. (1994). Determination of  damper winding and rotor iron currents in convertor  and line-fed synchronous machines. IEEE  Transactions on Energy Conversion, 9(4), 709-716.

[7] Knight, A.M., Karmaker, H., & Weeber, K. (2002).  Use of a permeance model to predict force  harmonic components and damper winding effects  in salient-pole synchronous machines. IEEE  Transactions on Energy Conversion, 17(4), 478- 484.

[8] Arjona, M.A. (2004). Parameter calculation of a  turbogenerator during an open-circuit transient  excitation. IEEE Transactions on Energy  Conversion, 19(1), 46-52

.[9] Lundstrom, L., Gustavsson, R., Aidanpaa, J.O.,  Dahlback, N., & Leijon, M. (2007). Influence on  the stability of generator rotors due to radial and  tangential magnetic pull force. IET Electric Power  Applications, 1(1), 1-8.

[10] Kinnunen, J.A., Pyrhonen, J., Niemela, M.,  Liukkonen, O., & Kurronen, P. (2007). Design of  damper windings for permanent magnet  synchronous machines. International Review of  Electrical Engıneering-IREE, 2(2), 260-272.

[11] Despalatovic, M., Jadric, M., & Terzic, B. (2009).  Influence of saturation on on-line estimation of  synchronous generator parameters. Automatika,  50(3-4), 152-166.

[12] Rahimian, M.M., & Butler-Purry, K. (2009).  Modeling of synchronous machines with damper  windings for condition monitoring. 2009 IEEE  International Electric Machines and Drives  Conference, 577-584, Miami, FL. 

[13] Traxler-Samek, G., Lugand, T., & Schwery, A.  (2010). Additional losses in the damper winding of  large hydrogenerators at open-circuit and load  conditions. IEEE Transactions on Industrial  Electronics, 57(1), 154-160.

[14] Zarko, D., Ban, D., Vazdar, I., & Jaric, V. (2012).  Calculation of Unbalanced Magnetic Pull in a  Salient-Pole Synchronous Generator Using FiniteElement Method and Measured Shaft Orbit. IEEE  Transactions on Industrial Electronics, 59(6),  2536-2549. 

[15] Matsuki, J., Taoka, H., Hayashi, Y., Iwamoto, S., &  Daikoku, A. (2014). Improvement of three-phase  unbalance due to connection of dispersed generator  by damper windings of synchronous generator.  Electrical Engineering in Japan, 186(1), 43-50.

[16] Wallin, M., Bladh, J., & Lundin, U. (2013).  Damper winding influence on unbalanced magnetic  pull in salient pole generators with rotor  eccentricity. IEEE Transactions on Magnetics,  49(9), 5158-5165.

[17] Nuzzo, S., Degano, M., Galea, M., Gerada, C.,  Gerada, D., & Brown, N. (2017). Improved damper  cage design for salient-pole synchronous  generators. IEEE Transactions on Industrial  Electronics, 64(3), 1958-1970.

[18] Qiu, H., Fan, X., Feng, J., & Yang, C. (2018).  Influence factors to affect eddy current loss of  damper winding in 24 MW bulb tubular turbine  generator. COMPEL-The International Journal for  Computation and Mathematics in Electrical and  Electronic Engineering, 37(1), 375-385.

[19] Elez, A., PetriniC, M., PetriniC, M., Vaseghi, B., &  Abasian, A. (2018). Salient pole synchronous  generator optimization by combined application of  slot skew and damper winding pitch methods.  Progress in Electromagnetics Research M, 73, 81- 90.

[20] Mandrile, F., Carpaneto, E., & Bojoi, R. (2019).  Virtual synchronous generator with simplified  single-axis damper winding. 28th IEEE  International Symposium on Industrial Electronics  (IEEE-ISIE), Vancouver, Canada, Jun. 12-14.

[21] Nuzzo, S., Bolognesi, P., Gerada, C., & Galea,  M. (2019). Simplified damper cage circuital model and fast analytical-numerical approach for the  analysis of synchronous generators. IEEE  Transactions on Industrial Electronics, 66(11),  8361-8371.

[22] Vanco, W.E., Silva, F.B., de Oliveira, J.M.M., &  Monteiro, J.R.B.A. (2020). Effects of harmonic  pollution on salient pole synchronous generators  and on induction generators operating in parallel in  isolated systems. International Transactions on  Electrical Energy Systems, 30(6), Article Number:  e12359.

[23] Perin, D., Karaoglan, A.D., & Yilmaz, K. (2021). Using grey wolf optimizer to minimize voltage total  harmonic distortion of a salient-pole synchronousgenerator. Scientia Iranica. DOI:  10.24200/SCI.2021.57657.5349 (Inpress).

[24] Sayyah, A., Aflaki, M., & Rezazade, A.R. (2006).  Optimization of THD and suppressing certain order  harmonies in PWM inverters using genetic  algorithms. IEEE International Symposium on  Intelligent Control, Munich, Germany, Oct. 4-6. 

[25] De Almeida, A.M.F., Pamplona, F.M.P, Braz,  H.D.M., da Silva, J.A.C.B., & Barros, L.S. (2014)  Multiobjective optimization for volt/THD problem  in distribution system. 6th World Congress on  Nature and Biologically Inspired Computing  (NaBIC), Porto, Portugal, Jul 30-Aug 01. 

[26] Pradigta, S.R.L., Asrarul, Q.O., Arief, Z., &  Windarko, N.A. (2017). Reduction of total  harmonic distortion (THD) on multilevel inverter  with modified PWM using genetic algorithm.  Emitter-International Journal of Engineering  Technology, 5(1), 91-118.

[27] Rodriguez, J.L.D., Fernandez, L.D.P., &  Penaranda, E.A.C. (2017). Multiobjective genetic  algorithm to minimize the THD in cascaded  multilevel converters with V/F control. 4th  Workshop on Engineering Applications (WEA),  Univ Tecnologica Bolivar, Cartagena,  COLOMBIA, Sep. 27-29.

[28] Fernandez, L.D.P., Rodriguez, J.L.D., &  Penaranda, E.A.C. (2018). Optimization of the  THD and the RMS voltage of a cascaded multilevel  power converter. IEEE International Conference on  Automation (ICA) / 23rd Congress of the ChileanAssociation-of-Automatic-Control (ACCA),  Concepcion, CHILE, Oct. 17-19. 

[29] Fernandez, L.D.P., Rodriguez, J.L.D., &  Penaranda, E.A.C. (2019). A multiobjective genetic  algorithm for the optimization of the THD and the  RMS output voltage in a multilevel converter with  17 levels of line voltage. IEEE Colombian  Conference on Applications in Computational  Intelligence (ColCACI), Barranquilla, Colombia,  Jun 5-7.

[30] Booln, M.B., & Cheraghi, M. (2019). THD  Minimization in a Five-Phase Five-Level VSI  Using a Novel SVPWM Technique. 10th  International Power Electronics, Drive Systems  and Technologies Conference (PEDSTC), Shiraz  Univ, Shiraz, Iran, Feb. 12-14.

[31] Alinejad-Beromi, Y., Sedighizadeh, M., & Sadighi,  M. (2008). A particle swarm optimization for  sitting and sizing of distributed generation in  distribution network to improve voltage profile and  reduce THD and losses. 43rd InternationalUniversities-Power-Engineering Conference,  Padova, Italy, Sep. 1-4. 

[32] Gallardo, J.A.A., Rodriguez, J.L.D., & Garcia, A.P.  (2013). THD optimization of a single phase  cascaded multilevel converter using PSO technique.  Workshop on Power Electronics and Power Quality  Applications (PEPQA), Bogota, Colombia, Jul 6-7. 

[33] Kanth, D.S.K., & Lalitha, M.P. (2014).  Mitigation of real power loss, THD & enhancement  of voltage profile with optimal DG allocation using  PSO & sensitivity analysis. Annual International  Conference on Emerging Research Areas -Magnetics, Machines and Drives  (AICERA/iCMMD), Kottayam, India, Jul. 24-26. 

[34] Memon, M.A., Memon, S., & Khan, S. (2017).  THD minimization from H-bridge cascaded  multilevel inverter using particle swarm  optimization technique,” Mehran University  Research Journal of Engineering and Technology,  36(1), 33-38.

[35] Dhanalakshmi, M.A., Ganesh, M.P., & Paul, K.  (2016). Analysis of optimum THD in asymmetrical  H-bridge multilevel inverter using HPSO  algorithm. 2nd International Conference on  Intelligent Computing and Applications (ICICA),  KCG Coll Technol, Chennai, India, Feb. 5-6. 

[36] Francis, R., & Meganathan, D. (2018). An  Improved ANFIS with Aid of ALO Technique for  THD Minimization of Multilevel Inverters. Journal  of Circuits Systems and Computers, 27(12), Article  Number: 1850193.

[37] Khalid, S., & Verma, S. (2019). THD and  compensation time analysis of three-phase shunt  active power filter using adaptive mosquito blood  search algorithm (AMBS). International Journal of  Energy Optimization and Engineering (IJEOE),  8(1), 25-46.

[38] Saremi, S., Mirjalili, S., & Lewis, A. (2017).  Grasshopper optimisation algorithm: theory and  application. Advances in Engineering Software,  105, 30-47.

[39] Wolpert, D.H., & Macready, W.G. (1997). No free  lunch theorems for optimization. IEEE  Transactions on Evolutionary Computation, 1, 67– 82 .

[40] Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z.,  Saremi, S., Faris, H., & Mirjalili, S.M. (2017). Salp  Swarm Algorithm: A bio-inspired optimizer for  engineering design problems, Salp Swarm  Algorithm: A bio-inspired optimizer for  engineering design problems. Advances in  Engineering Software, 114, 163-191. 

[41] Montgomery, D.C. (2013). Design and analysis of  experiments (8th ed.). John Wiley & Sons, New  Jersey, USA.

[42] Mason, R.L., Gunst, R.F., & Hess, J.L. (2003)Statistical Design and Analysis of Experiments (2nd  ed.). John Wiley & Sons, New Jersey, USA.

[43] Ileri, E., Karaoglan, A.D., & Akpinar, S. (2020).  Optimizing cetane improver concentration in  biodiesel-diesel blend via grey wolf optimizer  algorithm. Fuel, 273, article number:117784.

[44] Karaoglan, A.D., Ocaktan, D.G., Oral, A., & Perin,  D. (2020). Design Optimization of Magnetic Flux  Distribution for PMG by Using Response Surface  Methodology. IEEE Transactions on Magnetics,  56(6), 1-9, article number: 8200309. 

[45] Mirjalili, S. (2020). Grasshopper optimisation  algorithm [online]. Available from:  http://www.alimirjalili.com. Accessed 01 June  2020.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing