AccScience Publishing / IJOCTA / Volume 12 / Issue 2 / DOI: 10.11121/ijocta.2022.1146
RESEARCH ARTICLE

Localization of an ultra wide band wireless endoscopy capsule inside the  human body using received signal strength and centroid algorithm

Memduh Suveren1 Rüştü Akay1* Muzaffer Kanaan1
Show Less
1 Department of Mechatronics Engineering, Erciyes University, Kayseri 38039, Turkey
IJOCTA 2022, 12(2), 151–159; https://doi.org/10.11121/ijocta.2022.1146
Submitted: 20 August 2021 | Accepted: 31 May 2022 | Published: 26 July 2022
© 2022 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Wireless capsule endoscopy (WCE) is used for imaging and diagnosing diseases  in the gastrointestinal (GI) system. The location of the disease detected by WCE  is still an important problem. Location information is very important for the  surgical or drug treatment of the detected disease. In this study, RSS-based  centroid algorithm has been used in order to accurately predict the capsule position  on a sample data set. The effect of different parameters such as number of sensors  used on the proposed mathematical model, location of sensors on positioning is  analyzed in detail. The results show that a precise position detection is possible  with fewer sensors positioned correctly. As a result, the positioning error with the  correctly selected sensors is reduced by approximately 55%. In addition, the  performance of the proposed method was compared with the classical centroid  algorithm and more than 50% improvement was achieved

Keywords
Centroid algorithm
Wireless capsule endoscopy
In-body localization
RSS based model
Body model
Conflict of interest
The authors declare they have no competing interests.
References

[1] Mateen, H., Basar, R., Ahmed, A. U., & Ahmad, M.  Y. (2017). Localization of wireless capsule  endoscope: A systematic review. IEEE Sensors  Journal, 17(5), 1197-1206.

[2] Kumar, R., Zhao, Q., Seshamani, S., Mullin, G.,  Hager, G., & Dassopoulos, T. (2012). Assessment of  crohn's disease lesions in wireless capsule  endoscopy images. IEEE Transactions on  Biomedical Engineering, 59(2), 355-362.

[3] Woods, S.P., & Constandinou, T.G. (2013).  Wireless capsule endoscope for targeted drug  delivery: Mechanics and design considerations. IEEE Transactions on Biomedical Engineering 60(4), 945-953.

[4] Davenport, D., Hernandez, M., Lewis, D., Li, H. B.,  McPartland, R., Omeni, O., & Astrin, A. (2011).  IEEE 802.15. 6 Tutorial. IEEE P802, 15.

[5] Yuce, M.R., Keong, H.C., & Chae, M.S. (2009). Wideband communication for implantable and  wearable systems. IEEE transactions on microwave  theory and techniques 57(10), 2597-2604.

[6] Khaleghi, A., Chavez-Santiago, R., & Balasingham,  I. (2010). Ultra-wideband pulse-based data  communications for medical implants. IET  communications 4(15), 1889-1897.

[7] Alam, M. W., Vedaei, S. S., & Wahid, K. A. (2020).  A fluorescence-based wireless capsule endoscopy  system for detecting colorectal cancer. Cancers,  12(4), 890.

[8] Khan, A. H., Sohag, M. H. A., Vedaei, S. S.,  Mohebbian, M. R., & Wahid, K. A. (2020).  Automatic detection of intestinal bleeding using an  optical sensor for wireless capsule endoscopy. In  2020 42nd Annual International Conference of the  IEEE Engineering in Medicine & Biology Society  (EMBC) (pp. 4345-4348). IEEE.

[9] Deeba, F., Bui, F. M., & Wahid, K. A. (2020).  Computer-aided polyp detection based on image  enhancement and saliency-based selection.  Biomedical signal processing and control, 55,  101530.

[10] Wang, M., Shi, Q., Song, S., Hu, C., & Meng, M. Q.  H. (2019). A novel relative position estimation  method for capsule robot moving in gastrointestinal  tract. Sensors, 19(12), 2746.

[11] Shao, G., Tang, Y., Tang, L., Dai, Q. & Guo, Y. (2019). A Novel Passive Magnetic Localization  Wearable System for Wireless Capsule Endoscopy,  IEEE Sensors Journal, 19(9), 3462-3472.

[12] Than, T.D., Alici, G., Zhou, & H., Li, W. (2012). Areview of localization systems for robotic  endoscopic capsules. IEEE Transactions on  Biomedical Engineering 59(9), 2387-2399 .

[13] Pahlavan, K., Geng, Y., Cave, D. R., Bao, G., Mi, L.,  Agu, E., ... & Tarokh, V. (2015). A novel cyber  physical system for 3-D imaging of the small  intestine in vivo. IEEE Access, 3, 2730-2742.

[14] Wang, Y., Fu, R., Ye, Y., Khan, U., & Pahlavan, K.  (2011, January). Performance bounds for RF  positioning of endoscopy camera capsules. In 2011  IEEE Topical Conference on Biomedical Wireless  Technologies, Networks, and Sensing Systems, 71- 74.

[15] Mao, G., Fidan, B., & Anderson, B.D. (2007). Wireless sensor network localization techniques.  Computer networks 51(10), 2529-2553.

[16] Achroufene, A., Amirat, Y., & Chibani, A. (2018).  RSS-based indoor localization using belief function  theory. IEEE Transactions on Automation Science  and Engineering, 16(3), 1163-1180.

[17] Gabriel, C., Gabriel, S., & Corthout, Y. E. (1996).  The dielectric properties of biological tissues: I.  Literature survey. Physics in medicine & biology,  41(11), 2231.

[18] Suveren, M. (2015). Ultra wide band (uwb) wireless  systems in implant body area networks and  modelling of the distance measurement error. MSc  Master thesis, Erciyes University, Kayseri.

[19] Kanaan, M., & Suveren, M. (2015). A novel  frequency-dependent path loss model for ultra  wideband implant body area networks.  Measurement 68, 117-127.

[20] Kanaan, M., & Suveren, M. (2017). In-body ranging  with ultra-wideband signals: Techniques and  modeling of the ranging error. Wireless  Communications and Mobile Computing, 2017.

[21] He, F., Man, H., & Wang, W. (2011). Maximal ratio  diversity combining enhanced security. IEEE  Communications Letters 15(5), 509-511.

[22] Alamouti, S. M. (1998). A simple transmit diversity  technique for wireless communications. IEEE  Journal on selected areas in communications, 16(8),  1451-1458.

[23] Liu, Y., Jin, M., & Cui, C. (2010). Modified  weighted centroid localization algorithm based on  rssi for wsn. Chinese Journal of Sensors and  Actuators 23(5), 717-721 

[24] Pivato, P., Palopoli, L., & Petri, D. (2011). Accuracy  of rss-based centroid localization algorithms in an  indoor environment. IEEE Transactions on  Instrumentation and Measurement 60(10), 3451- 3460.

[25] Ackerman, M. J., Spitzer, V. M., Scherzinger, A. L.,  & Whitlock, D. G. (1995). The Visible Human data  set: an image resource for anatomical visualization.  Medinfo 8, 1195-1198.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing