AccScience Publishing / IJOCTA / Volume 11 / Issue 2 / DOI: 10.11121/ijocta.01.2021.001091
RESEARCH ARTICLE

An application of the whale optimization algorithm with Levy flight  strategy for clustering of medical datasets

Ayşe Nagehan Mat1* Onur İnan1* Murat Karakoyun1*
Show Less
1 Department of Computer Engineering, Necmettin Erbakan University, Turkey
IJOCTA 2021, 11(2), 216–226; https://doi.org/10.11121/ijocta.01.2021.001091
Submitted: 4 March 2021 | Accepted: 25 May 2021 | Published: 22 June 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Clustering, which is handled by many researchers, is separating data into clusters  without supervision. In clustering, the data are grouped using similarities or  differences between them. Many traditional and heuristic algorithms are used in  clustering problems and new techniques continue to be developed today. In this  study, a new and effective clustering algorithm was developed by using the Whale  Optimization Algorithm (WOA) and Levy flight (LF) strategy that imitates the  hunting behavior of whales. With the developed WOA-LF algorithm, clustering  was performed using ten medical datasets taken from the UCI Machine Learning  Repository database. The clustering performance of the WOA-LF was compared  with the performance of k-means, k-medoids, fuzzy c-means and the original  WOA clustering algorithms. Application results showed that WOA-LF has more  successful clustering performance in general and can be used as an alternative  algorithm in clustering problems.

Keywords
Clustering
Whale optimization algorithm
Levy flight
K-means
K-medoids
Fuzzy c-means
Conflict of interest
The authors declare they have no competing interests.
References

[1] Evirgen, F. (2016). Analyze the optimal solutions of  optimization problems by means of fractional  gradient based system using VIM. An International  Journal of Optimization and Control: Theories &  Applications (IJOCTA), 6(2), 75-83.

[2] Evirgen, F. (2017). Conformable fractional gradient  based dynamic system for constrained optimization  problem. Special issue of the 3rd International  Conference on Computational and Experimental  Science and Engineering (ICCESEN 2016),1066- 1069.

[3] Evirgen, F. and Yavuz, M. (2018). An alternative  approach for nonlinear optimization problem with  Caputo-Fabrizio derivative. ITM Web of  Conferences,01009.

[4] Cui, D. (2017). Application of whale optimization  algorithm in reservoir optimal operation. Advances  in Science and Technology of Water Resources, 37(3), 72-79.

[5] Zhang, C., Ouyang, D., and Ning, J. (2010). An  artificial bee colony approach for clustering. Expert  systems with applications, 37(7), 4761-4767.

[6] Selim, S. Z. and Alsultan, K. (1991). A simulated  annealing algorithm for the clustering problem. Pattern recognition, 24(10), 1003-1008.

[7] Maulik, U. and Mukhopadhyay, A. (2010).  Simulated annealing based automatic fuzzy  clustering combined with ANN classification for  analyzing microarray data. Computers & operations  research, 37(8), 1369-1380.

[8] Maulik, U. and Bandyopadhyay, S. (2000). Genetic  algorithm-based clustering technique. Pattern  recognition, 33(9), 1455-1465.

[9] Shelokar, P., Jayaraman, V. K., and Kulkarni, B. D.  (2004). An ant colony approach for clustering. Analytica Chimica Acta, 509(2), 187-195.

[10] Van der Merwe, D. and Engelbrecht, A. P. (2003).  Data clustering using particle swarm optimization.  The 2003 Congress on Evolutionary Computation,  2003. CEC'03.,215-220.

[11] Cura, T. (2012). A particle swarm optimization  approach to clustering. Expert Systems with  Applications, 39(1), 1582-1588.

[12] Karaboga, D. and Ozturk, C. (2011). A novel  clustering approach: Artificial Bee Colony (ABC)  algorithm. Applied soft computing, 11(1), 652-657.

[13] Armano, G. and Farmani, M. R. (2014). Clustering  analysis with combination of artificial bee colony  algorithm and k-means technique. International  Journal of Computer Theory and Engineering, 6,  141-145.

[14] Karthikeyan, S. and Christopher, T. (2014). A hybrid  clustering approach using artificial bee colony  (ABC) and particle swarm optimization. International Journal of Computer Applications, 100(15).

[15] Mane, S. U. and Gaikwad, P. G. (2014). Hybrid  particle swarm optimization (HPSO) for data  clustering. International Journal of Computer  Applications, 97(19).

[16] Mirjalili, S. and Lewis, A. (2016). The whale  optimization algorithm. Advances in engineering  software, 95, 51-67.

[17] Kennedy, J. and Eberhart, R. (1995). Particle swarm  optimization. Proceedings of ICNN'95-international  conference on neural networks,1942-1948.

[18] Storn, R. and Price, K. (1997). Differential  evolution–a simple and efficient heuristic for globaloptimization over continuous spaces. Journal of  global optimization, 11(4), 341-359.

[19] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S.  (2009). GSA: a gravitational search algorithm. Information sciences, 179(13), 2232-2248.

[20] Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary  programming made faster. IEEE Transactions on  Evolutionary computation, 3(2), 82-102.

[21] Nasiri, J. and Khiyabani, F. M. (2018). A whale  optimization algorithm (WOA) approach for  clustering. Cogent Mathematics & Statistics, 5(1),  1483565.

[22] Canayaz, M. and Özdağ, R. (2017). Data clustering  based on the whale optimization. Middle East  Journal of Technic, 2(2), 178-187.

[23] Al-Temeemy, A. A., Spencer, J., and Ralph, J.  (2010). Levy flights for improved ladar scanning.  2010 IEEE International Conference on Imaging  Systems and Techniques,225-228.

[24] Chen, Y. (2010). Research and simulation on Levy  flight model for DTN. 2010 3rd International  Congress on Image and Signal Processing,4421- 4423.

[25] Pereyra, M. A. and Batatia, H. (2010). A Levy flight  model for ultrasound in skin tissues. 2010 IEEE International Ultrasonics Symposium,2327-2331.

[26] Terdik, G. and Gyires, T. (2008). Lévy flights and  fractal modeling of internet traffic. IEEE/ACM  Transactions on Networking, 17(1), 120-129.

[27] Sutantyo, D. K., Kernbach, S., Levi, P., and  Nepomnyashchikh, V. A. (2010). Multi-robot  searching algorithm using Lévy flight and artificial  potential field. 2010 IEEE Safety Security and  Rescue Robotics,1-6.

[28] Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., and  Chong, S. (2011). On the levy-walk nature of human  mobility. IEEE/ACM transactions on networking, 19(3), 630-643.

[29] Edwards, A. M., Phillips, R. A., Watkins, N. W.,  Freeman, M. P., Murphy, E. J., Afanasyev, V., et al. (2007). Revisiting Lévy flight search patterns of  wandering albatrosses, bumblebees and deer. Nature, 449(7165), 1044-1048.

[30] Viswanathan, G. M., Afanasyev, V., Buldyrev, S.,  Murphy, E., Prince, P., and Stanley, H. E. (1996).  Lévy flight search patterns of wandering albatrosses. Nature, 381(6581), 413-415.

[31] Yang, X.-S. and Deb, S. (2013). Multiobjective  cuckoo search for design optimization. Computers &  Operations Research, 40(6), 1616-1624.

[32] Yang, X.-S. (2010). Firefly algorithm, Levy flights  and global optimization. Research and development  in intelligent systems XXVI. Springer, 209-218.

[33] Murphy, P. and Aha, D. (1994). UCI repository of  machine learning. University of California,  Department of Information and Computer Science.

[34] Ozdamar, K. (2002). Paket programlari ile  istatistiksel veri analizi-1. Kaan Kitabevi, Eskisehir.

[35] Tatlıdil, H. (1996). Uygulamalı Çok Değişkenli  İstatistiksel Analiz. Cem Ofset Ltd. Şti, Ankara.

[36] Hair Jr, J., Anderson, R., and Tatham, R. (1998).  Multivariate data analysis.NJ: PrenticeYHall Inc,  Upper Saddle River.

[37] Lorr, M. (1983). Cluster analysis for socialscientists.Jossey-Bass Incorporated Pub.

[38] Boushaki, S. I., Kamel, N., and Bendjeghaba, O.  (2018). A new quantum chaotic cuckoo search  algorithm for data clustering. Expert Systems with  Applications, 96, 358-372.

[39] Frigui, H. and Krishnapuram, R. (1999). A robust  competitive clustering algorithm with applications in  computer vision. Ieee transactions on pattern  analysis and machine intelligence, 21(5), 450-465.

[40] Karakoyun, M. (2015). Kurbağa sıçrama  algoritmasının kümeleme problemlerine  uygulanması. Master Thesis. Selçuk University.

[41] Sharma, S. (1996). Applied multivariate techniques.

[42] Tabak, J. (2014). Geometry: the language of space  and form. Infobase Publishing.

[43] MacQueen, J. (1967). Some methods for  classification and analysis of multivariate  observations. Proceedings of the fifth Berkeley  symposium on mathematical statistics and  probability,281-297.

[44] Han, J. and Kamber, M. (2010). Data mining:  concepts and techniques. [Nachdr.], Amsterdam:  Elsevier/Morgan Kaufmann, 11, 6.

[45] Tan, P.-N., Steinbach, M., and Kumar, V. (2006).  Classification: basic concepts, decision trees, and  model evaluation. Introduction to data mining, 1,  145-205.

[46] Xu, R. and Wunsch, D. (2005). Survey of clustering  algorithms. IEEE Transactions on neural networks, 16(3), 645-678.

[47] Dodge, Y. (2012). Statistical data analysis based on  the L1-norm and related methods. Birkhäuser.

[48] Dinçer, Ş. E. (2006). Veri madenciliğinde K-means  algoritması ve tıp alanında uygulanması. Master  Thesis. Kocaeli University.

[49] Karakoyun, M., Saglam, A., Baykan, N. A., and  Altun, A. A. (2017). Non-locally color image  segmentation for remote sensing images in different  color spaces by using data-clustering methods. 5th  International Conference on Advanced Technology  & Sciences (ICAT'17), 6-12.

[50] Höppner, F., Klawonn, F., Kruse, R., and Runkler,  T. (1999). Fuzzy cluster analysis: methods for  classification, data analysis and image recognition. John Wiley & Sons.

[51] Moertini, V. (2002). Introduction to Five  DataClustering Algorithms Clustering Algorithm. Integral, 7(2).

[52] Goldbogen, J. A., Friedlaender, A. S., Calambokidis,  J., Mckenna, M. F., Simon, M., and Nowacek, D. P.  (2013). Integrative approaches to the study of baleen  whale diving behavior, feeding performance, and  foraging ecology. BioScience, 63(2), 90-100.

[53] Tanyıldızı, E. and Cigalı, T. (2017). Kaotik Haritalı  Balina Optimizasyon Algoritmaları. Fırat  Üniversitesi Mühendislik Bilimleri Dergisi, 29(1),  307-317.

[54] Pavlyukevich, I. (2007). Lévy flights, non-local  search and simulated annealing. Journal of  Computational Physics, 226(2), 1830-1844.

[55] Reynolds, A. M. and Frye, M. A. (2007). Free-flight  odor tracking in Drosophila is consistent with an  optimal intermittent scale-free search. PloS one, 2(4), e354.

[56] Shlesinger, M. F. (2006). Search research. Nature, 443(7109), 281-282. [57] Chechkin, A. V., Metzler, R., Klafter, J., and  Gonchar, V. Y. (2008). Introduction to the theory of  Lévy flights. Anomalous transport, 1, 129.

[58] Yang, X.-S. (2010). Engineering optimization: an  introduction with metaheuristic applications. John  Wiley & Sons.

[59] Lee, C.-Y. and Yao, X. (2001). Evolutionary  algorithms with adaptive lévy mutations.  Proceedings of the 2001 congress on evolutionary  computation (IEEE Cat. No. 01TH8546), 568-575.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing