AccScience Publishing / IJOCTA / Volume 11 / Issue 2 / DOI: 10.11121/ijocta.01.2021.001077
RESEARCH ARTICLE

Differential gradient evolution plus algorithm for constraint optimization  problems: A hybrid approach

Muhammad Farhan Tabassum1 Sana Akram1 Saadia Hassan2 Rabia Karim2 Parvaiz Ahmad Naik3 Muhammad Farman4 Mehmet Yavuz5* Mehraj- ud-din Naik6 Hijaz Ahmad7,8
Show Less
1 Department of Mathematics, University of Management and Technology, Lahore, 54000, Pakistan
2 Department of Sports Sciences, Faculty of Allied Health Science, University of Lahore, Lahore, 54000, Pakistan
3 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, Shaanix. People’s Rebublic of China.
4 Department of Mathematics and Statistics, University of Lahore, Lahore, 54000, Pakistan
5 Department of Mathematics and Computer Sciences, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Turkey
6 Department of Chemical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
7 Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186 Roma, Italy
8 Department of Basic Sciences, University of Engineering and Technology, Peshawar, Pakistan
IJOCTA 2021, 11(2), 158–177; https://doi.org/10.11121/ijocta.01.2021.001077
Submitted: 19 January 2021 | Accepted: 25 March 2021 | Published: 2 May 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

Optimization for all disciplines is very important and applicable. Optimization has  played a key role in practical engineering problems. A novel hybrid meta-heuristic  optimization algorithm that is based on Differential Evolution (DE), Gradient  Evolution (GE) and Jumping Technique named Differential Gradient Evolution  Plus (DGE+) are presented in this paper. The proposed algorithm hybridizes the  above-mentioned algorithms with the help of an improvised dynamic probability  distribution, additionally provides a new shake off method to avoid premature  convergence towards local minima. To evaluate the efficiency, robustness, and  reliability of DGE+ it has been applied on seven benchmark constraint problems,  the results of comparison revealed that the proposed algorithm can provide very  compact, competitive and promising performance.

Keywords
Meta-heuristic algorithms
Hybridization
Differential evolution
Gradient evolution
Constraint optimization problems
Conflict of interest
The authors declare they have no competing interests.
References

[1] Khalilpourazari, S. & Khalilpourazary. S. (2018).  Optimization of production time in the multi-pass  milling process via a robust grey wolf optimizer. Neural Computing and Applications. 29(12), 1321- 1336.

[2] Yang, X.-S. (2010). Nature-inspired metaheuristic  algorithms. Luniver press.

[3] Gandomi, A. H., Yang, X.-S. & Alavi, A. H. (2011).  Mixed variable structural optimization using firefly  algorithm. Computers & Structures. 89(23-24), 2325- 2336.

[4] Zhang, L., et al. (2016). A novel hybrid firefly  algorithm for global optimization. PloS one. 11(9),  e0163230.

[5] Alba, E. & Dorronsoro, B. (2005). The  exploration/exploitation tradeoff in dynamic cellular  genetic algorithms. IEEE transactions on evolutionary  computation. 9(2), 126-142.

[6] Olorunda, O. and Engelbrecht, A. P. (2008).  Measuring exploration/exploitation in particle swarms  using swarm diversity. in 2008 IEEE Congress on  Evolutionary Computation (IEEE World Congress on  Computational Intelligence). 

[7] Lozano, M. & García-Martínez, C. (2010). Hybrid  metaheuristics with evolutionary algorithms  specializing in intensification and diversification:  Overview and progress report. Computers &  Operations Research. 37(3), 481-497.

[8] Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation.  12(6), 702-713.

[9] Storn, R. (1996). On the usage of differential evolution  for function optimization. in Proceedings of North  American Fuzzy Information Processing. IEEE.

[10] Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution  strategies–a comprehensive introduction. Natural  computing. 1(1), 3-52.

[11] Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999). From natural to artificial swarm intelligence. Oxford  university press, UK.

[12] Koza, J.R. & J.R. Koza. (1992). Genetic  programming: On the programming of computers by  means of natural selection. MIT press.

[13] Alatas, B. (2011). Acroa: Artificial chemical reaction  optimization algorithm for global optimization. Expert  Systems with Applications. 38(10), 13170-13180.

[14] Erol, O. K. & I. Eksin. (2006). A new optimization  method: Big bang–big crunch. Advances in  Engineering Software. 37(2), 106-111.

[15] Rashedi, E., H. Nezamabadi-Pour, & S. Saryazdi.  (2009). Gsa: A gravitational search algorithm. Information sciences. 179(13), 2232-2248.

[16] Kaveh, A. & M. Khayatazad. (2012). A new metaheuristic method: Ray optimization. Computers &  Structures. 112: p. 283-294.

[17] Kirkpatrick, S., C. D. Gelatt, & M. P. Vecchi. (1983).  Optimization by simulated annealing. science.  220(4598), 671-680.

[18] Du, H., X. Wu, & J. Zhuang. (2006) Small-world  optimization algorithm for function optimization. in  International Conference on Natural Computation.  Springer.

[19] Evirgen, F., & Yavuz, M. (2018). An alternative  approach for nonlinear optimization problem with  Caputo-Fabrizio derivative. In ITM Web of  Conferences (Vol. 22, p. 01009). EDP Sciences.

[20] Evirgen, F., & Özdemir, N. (2012). A fractional order  dynamical trajectory approach for optimization  problem with HPM. In Fractional Dynamics and  Control (pp. 145-155). Springer, New York, NY

[21] Evirgen, F. (2017). Conformable Fractional Gradient  Based Dynamic System for Constrained Optimization  Problem. Acta Physica Polonica A, 132(3), 1066-1069.

[22] Evirgen, F. (2016). Analyze the optimal solutions of  optimization problems by means of fractional gradient  based system using VIM. An International Journal of  Optimization and Control: Theories & Applications  (IJOCTA), 6(2), 75-83.

[23] Evirgen, F. (2017). Solution of a Class of Optimization  Problems Based on Hyperbolic Penalty Dynamic  Framework. Acta Physica Polonica A, 132(3), 1062- 1065.

[24] Jumani, T. A., et al. (2020). Jaya optimization  algorithm for transient response and stability  enhancement of a fractional-order PID based  automatic voltage regulator system. Alexandria  Engineering Journal, 59(4), 2429-2440.

[25] Al-Dhaifallah, M., et al. (2018). Optimal parameter  design of fractional order control based INC-MPPT for  PV system. Solar Energy, 159, 650-664.

[26] Bitirgen, R., Hancer, M., & Bayezit, I. (2018). All  Stabilizing State Feedback Controller for Inverted  Pendulum Mechanism. IFAC-PapersOnLine, 51(4),  346-351.

[27] Stützle, T., et al. (2011). Parameter adaptation in ant  colony optimization, in Autonomous search. Springer.  191-215.

[28] Yang, X.-S. (2010). A new metaheuristic bat-inspired  algorithm, in Nature inspired cooperative strategies for  optimization (nicso 2010). Springer. 65-74.

[29] Lu, X. and Y. Zhou. (2008). A novel global  convergence algorithm: Bee collecting pollen  algorithm. in International Conference on Intelligent  Computing. 2008. Springer.

[30] Singh, H., et al. (2019). A reliable numerical algorithm  for the fractional klein-gordon equation. Engineering  Transactions. 67(1), 21–34.

[31] Kennedy, J. & R. Eberhart. Particle swarm  optimization (pso). in Proc IEEE International  Conference on Neural Networks, Perth, Australia.  1995.

[32] Kaveh, A. & V. Mahdavi. (2014). Colliding bodies  optimization: A novel meta-heuristic method. Computers & Structures. 139: p. 18-27.

[33] Sadollah, A., et al. (2013). Mine blast algorithm: A  new population based algorithm for solving  constrained engineering optimization problems. Applied Soft Computing. 13(5), 2592-2612.

[34] Wang, B., C. Liu, & H. Wu. (2014). The research of  pattern synthesis of linear antenna array based on  seeker optimization algorithm. in 2014 International  Conference on Cyber-Enabled Distributed Computing  and Knowledge Discovery. IEEE.

[35] He, S., Q. H. Wu, & J. Saunders. (2009). Group search  optimizer: An optimization algorithm inspired by  animal searching behavior. IEEE transactions on  evolutionary computation. 13(5), 973-990.

[36] Ramezani, F. & Lotfi, S. (2013). Social-based  algorithm (sba). Applied Soft Computing. 13(5), 2837- 2856.

[37] Lu, Y., et al. (2010). An adaptive chaotic differential  evolution for the short-term hydrothermal generation  scheduling problem. Energy Conversion and  Management. 51(7), 1481-1490.

[38] Lu, Y., et al. (2010). An adaptive hybrid differential  evolution algorithm for dynamic economic dispatch  with valve-point effects. Expert Systems with  Applications. 37(7), 4842-4849.

[39] Chang, L., et al. (2012). A hybrid method based on  differential evolution and continuous ant colony  optimization and its application on wideband antenna  design. Progress in electromagnetics research. 122: p.  105-118.

[40] Abdullah, A., et al. (2013). An evolutionary firefly  algorithm for the estimation of nonlinear biological  model parameters. PloS one. 8(3), e56310.

[41] Niknam, T., Azizipanah-Abarghooee, R. & Aghaei, J.  (2012). A new modified teaching-learning algorithm  for reserve constrained dynamic economic dispatch. IEEE Transactions on power systems. 28(2), 749-763.

[42] Bhattacharya, A. and Chattopadhyay, P. K. (2010).  Hybrid differential evolution with biogeography-based  optimization for solution of economic load dispatch. IEEE Transactions on power systems. 25(4), 1955- 1964.

[43] Kuo, R. and Zulvia, F. E. (2015). The gradient  evolution algorithm: A new metaheuristic. Information  Sciences. 316: p. 246-265.

[44] Bazaraa, M. S., H. D. Sherali, & C. M. Shetty. (2013).  Nonlinear programming: Theory and algorithms. John  Wiley & Sons.

[45] Wang, S.-K., J.-P. Chiou, & C.-W. Liu. (2007). Nonsmooth/non-convex economic dispatch by a novel  hybrid differential evolution algorithm. IET  Generation, Transmission & Distribution. 1(5), 793- 803.

[46] Chiou, J.-P. (2007). Variable scaling hybrid  differential evolution for large-scale economic  dispatch problems. Electric Power Systems Research.  77(3-4), 212-218.

[47] Storn, R. & K. Price. (1997). Differential evolution–a  simple and efficient heuristic for global optimization  over continuous spaces. Journal of global  optimization. 11(4), 341-359.

[48] Kuo, R. & F. E. Zulvia. Cluster analysis using a  gradient evolution-based k-means algorithm. in 2016  IEEE Congress on Evolutionary Computation (CEC).  2016. IEEE.

[49] Mezura-Montes, E. & C. A. C. Coello. (2008). An  empirical study about the usefulness of evolution  strategies to solve constrained optimization problems. International Journal of General Systems. 37(4), 443- 473.

[50] Kaveh, A. & S. Talatahari. (2009). A particle swarm  ant colony optimization for truss structures with  discrete variables. Journal of Constructional Steel  Research. 65(8-9), 1558-1568.

[51] Koziel, S. & Z. Michalewicz. (1999). Evolutionary  algorithms, homomorphous mappings, and constrained  parameter optimization. Evolutionary computation.  7(1), 19-44.

[52] Runarsson, T. P. & X. Yao. (2000). Stochastic ranking  for constrained evolutionary optimization. IEEE  Transactions on Evolutionary Computation. 4(3), 284- 294.

[53] Parsopoulos, K. E. & M. N. Vrahatis. (2005). Unified  particle swarm optimization for solving constrained  engineering optimization problems. in International  conference on natural computation. Springer.

[54] Karaboga, D. & B. Basturk. (2007). Artificial bee  colony (abc) optimization algorithm for solving  constrained optimization problems. in International  fuzzy systems association world congress. Springer.

[55] Akay, B. & D. Karaboga. (2012). Artificial bee colony  algorithm for large-scale problems and engineering  design optimization. Journal of intelligent  manufacturing. 23(4), 1001-1014.

[56] Geem, Z. W., J. H. Kim, & G. V. Loganathan. (2001).  A new heuristic optimization algorithm: Harmony  search. Simulation. 76(2), 60-68.

[57] Lee, K. S. & Z. W. Geem. (2005). A new metaheuristic algorithm for continuous engineering  optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and  Engineering. 194(36-38), 3902-3933.

[58] Farooq, H. & M. T. Siddique. (2014). A comparative  study on user interfaces of interactive genetic  algorithm. Procedia Computer Science. 32: p. 45-52.

[59] Amirjanov, A. (2008). Investigation of a changing  range genetic algorithm in noisy environments. International journal for numerical methods in  engineering. 73(1), 26-46.

[60] Hamida, S. B. & M. Schoenauer. (2002). Aschea: New  results using adaptive segregational constraint  handling. in Proceedings of the 2002 Congress on  Evolutionary Computation CEC'02 (Cat No  02TH8600). IEEE.

[61] Krohling, R. A. & L. dos Santos Coelho. (2006).  Coevolutionary particle swarm optimization using  gaussian distribution for solving constrained  optimization problems. IEEE Transactions on  Systems, Man, and Cybernetics, Part B (Cybernetics).  36(6), 1407-1416.

[62] Coello Coello, C. A. & R. L. Becerra. (2004). Efficient  evolutionary optimization through the use of a cultural  algorithm. Engineering Optimization. 36(2), 219-236.

[63] Huang, F.-z., L. Wang, & Q. He. (2007). An effective  co-evolutionary differential evolution for constrained  optimization. Applied Mathematics and Computation.  186(1), 340-356.

[64] Zahara, E. & Y.-T. Kao. (2009). Hybrid nelder–mead  simplex search and particle swarm optimization for  constrained engineering design problems. Expert  Systems with Applications. 36(2), 3880-3886.

[65] Becerra, R. L. & C. A. C. Coello. (2006). Cultured  differential evolution for constrained optimization. Computer Methods in Applied Mechanics and  Engineering. 195(33-36), 4303-4322.

[66] Muñoz Zavala, A. E., A. H. Aguirre, & E. R. Villa  Diharce. (2005). Constrained optimization via particle  evolutionary swarm optimization algorithm (peso). in  Proceedings of the 7th annual conference on Genetic  and evolutionary computation. ACM.

[67] Tessema, B. & G. G. Yen. (2006). A self adaptive  penalty function based algorithm for constrained  optimization. in 2006 IEEE International Conference  on Evolutionary Computation. IEEE.

[68] Lampinen, J. (2002). A constraint handling approach  for the differential evolution algorithm. in Proceedings  of the 2002 Congress on Evolutionary Computation  CEC'02 (Cat No 02TH8600). IEEE.

[69] Fogel, D. B. (1995). A comparison of evolutionary  programming and genetic algorithms on selected  constrained optimization problems. Simulation. 64(6), 397-404.

[70] Amirjanov, A. (2006). The development of a changing  range genetic algorithm. Computer Methods in Applied  Mechanics and Engineering. 195(19-22), 2495-2508.

[71] Chootinan, P. & A. Chen. (2006). Constraint handling  in genetic algorithms using a gradient-based repair  method. Computers & operations research. 33(8), 2263-2281.

[72] Gupta, S., R. Tiwari, & S. B. Nair. (2007). Multiobjective design optimisation of rolling bearings using  genetic algorithms. Mechanism and Machine Theory.  42(10), 1418-1443.

[73] Zhang, M., W. Luo, & X. Wang. (2008). Differential  evolution with dynamic stochastic selection for  constrained optimization. Information Sciences.  178(15), 3043-3074.

[74] Wang, L. & L.-p. Li. (2010). An effective differential  evolution with level comparison for constrained  engineering design. Structural and Multidisciplinary  Optimization. 41(6), 947-963.

[75] Hedar, A.-R. & M. Fukushima. (2006). Derivative-free  filter simulated annealing method for constrained  continuous global optimization. Journal of global  optimization. 35(4), 521-549.

[76] Deb, K. (2000). An efficient constraint handling  method for genetic algorithms. Computer Methods in  Applied Mechanics and Engineering. 186(2-4), 311- 338.

[77] Runarsson, T. P. & X. Yao. (2005). Search biases in  constrained evolutionary optimization. IEEE  Transactions on Systems, Man, and Cybernetics, Part  C (Applications and Reviews). 35(2), 233-243.

[78] Mezura-Montes, E. & C. A. C. Coello. (2005). A  simple multimembered evolution strategy to solve  constrained optimization problems. IEEE  Transactions on Evolutionary Computation. 9(1), 1- 17.

[79] Michalewicz, Z. (1995). Genetic algorithms,  numerical optimization, and constraints. in  Proceedings of the sixth international conference on  genetic algorithms. Citeseer.

[80] Rao, R. V., V. J. Savsani, & D. Vakharia. (2011).  Teaching–learning-based optimization: A novel  method for constrained mechanical design  optimization problems. Computer-Aided Design.  43(3), 303-315.

[81] Wang, Y., et al. (2009). Constrained optimization  based on hybrid evolutionary algorithm and adaptive  constraint-handling technique. Structural and  Multidisciplinary Optimization. 37(4), 395-413.

[82] de Fátima Araújo, T. & W. Uturbey. (2013).  Performance assessment of pso, de and hybrid pso–de  algorithms when applied to the dispatch of generation  and demand. International Journal of Electrical Power  & Energy Systems. 47: p. 205-217.

[83] Liu, H., Z. Cai, & Y. Wang. (2010). Hybridizing  particle swarm optimization with differential evolution  for constrained numerical and engineering  optimization. Applied Soft Computing. 10(2), 629-640.

[84] Bracken, J. & G. P. McCormick (1968). Selected  applications of nonlinear programming. Research  Analysis Corp Mclean.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing