Differential gradient evolution plus algorithm for constraint optimization problems: A hybrid approach
Optimization for all disciplines is very important and applicable. Optimization has played a key role in practical engineering problems. A novel hybrid meta-heuristic optimization algorithm that is based on Differential Evolution (DE), Gradient Evolution (GE) and Jumping Technique named Differential Gradient Evolution Plus (DGE+) are presented in this paper. The proposed algorithm hybridizes the above-mentioned algorithms with the help of an improvised dynamic probability distribution, additionally provides a new shake off method to avoid premature convergence towards local minima. To evaluate the efficiency, robustness, and reliability of DGE+ it has been applied on seven benchmark constraint problems, the results of comparison revealed that the proposed algorithm can provide very compact, competitive and promising performance.
[1] Khalilpourazari, S. & Khalilpourazary. S. (2018). Optimization of production time in the multi-pass milling process via a robust grey wolf optimizer. Neural Computing and Applications. 29(12), 1321- 1336.
[2] Yang, X.-S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
[3] Gandomi, A. H., Yang, X.-S. & Alavi, A. H. (2011). Mixed variable structural optimization using firefly algorithm. Computers & Structures. 89(23-24), 2325- 2336.
[4] Zhang, L., et al. (2016). A novel hybrid firefly algorithm for global optimization. PloS one. 11(9), e0163230.
[5] Alba, E. & Dorronsoro, B. (2005). The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE transactions on evolutionary computation. 9(2), 126-142.
[6] Olorunda, O. and Engelbrecht, A. P. (2008). Measuring exploration/exploitation in particle swarms using swarm diversity. in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[7] Lozano, M. & García-Martínez, C. (2010). Hybrid metaheuristics with evolutionary algorithms specializing in intensification and diversification: Overview and progress report. Computers & Operations Research. 37(3), 481-497.
[8] Simon, D. (2008). Biogeography-based optimization. IEEE transactions on evolutionary computation. 12(6), 702-713.
[9] Storn, R. (1996). On the usage of differential evolution for function optimization. in Proceedings of North American Fuzzy Information Processing. IEEE.
[10] Beyer, H.-G. & Schwefel, H.-P. (2002). Evolution strategies–a comprehensive introduction. Natural computing. 1(1), 3-52.
[11] Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999). From natural to artificial swarm intelligence. Oxford university press, UK.
[12] Koza, J.R. & J.R. Koza. (1992). Genetic programming: On the programming of computers by means of natural selection. MIT press.
[13] Alatas, B. (2011). Acroa: Artificial chemical reaction optimization algorithm for global optimization. Expert Systems with Applications. 38(10), 13170-13180.
[14] Erol, O. K. & I. Eksin. (2006). A new optimization method: Big bang–big crunch. Advances in Engineering Software. 37(2), 106-111.
[15] Rashedi, E., H. Nezamabadi-Pour, & S. Saryazdi. (2009). Gsa: A gravitational search algorithm. Information sciences. 179(13), 2232-2248.
[16] Kaveh, A. & M. Khayatazad. (2012). A new metaheuristic method: Ray optimization. Computers & Structures. 112: p. 283-294.
[17] Kirkpatrick, S., C. D. Gelatt, & M. P. Vecchi. (1983). Optimization by simulated annealing. science. 220(4598), 671-680.
[18] Du, H., X. Wu, & J. Zhuang. (2006) Small-world optimization algorithm for function optimization. in International Conference on Natural Computation. Springer.
[19] Evirgen, F., & Yavuz, M. (2018). An alternative approach for nonlinear optimization problem with Caputo-Fabrizio derivative. In ITM Web of Conferences (Vol. 22, p. 01009). EDP Sciences.
[20] Evirgen, F., & Özdemir, N. (2012). A fractional order dynamical trajectory approach for optimization problem with HPM. In Fractional Dynamics and Control (pp. 145-155). Springer, New York, NY
[21] Evirgen, F. (2017). Conformable Fractional Gradient Based Dynamic System for Constrained Optimization Problem. Acta Physica Polonica A, 132(3), 1066-1069.
[22] Evirgen, F. (2016). Analyze the optimal solutions of optimization problems by means of fractional gradient based system using VIM. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 6(2), 75-83.
[23] Evirgen, F. (2017). Solution of a Class of Optimization Problems Based on Hyperbolic Penalty Dynamic Framework. Acta Physica Polonica A, 132(3), 1062- 1065.
[24] Jumani, T. A., et al. (2020). Jaya optimization algorithm for transient response and stability enhancement of a fractional-order PID based automatic voltage regulator system. Alexandria Engineering Journal, 59(4), 2429-2440.
[25] Al-Dhaifallah, M., et al. (2018). Optimal parameter design of fractional order control based INC-MPPT for PV system. Solar Energy, 159, 650-664.
[26] Bitirgen, R., Hancer, M., & Bayezit, I. (2018). All Stabilizing State Feedback Controller for Inverted Pendulum Mechanism. IFAC-PapersOnLine, 51(4), 346-351.
[27] Stützle, T., et al. (2011). Parameter adaptation in ant colony optimization, in Autonomous search. Springer. 191-215.
[28] Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm, in Nature inspired cooperative strategies for optimization (nicso 2010). Springer. 65-74.
[29] Lu, X. and Y. Zhou. (2008). A novel global convergence algorithm: Bee collecting pollen algorithm. in International Conference on Intelligent Computing. 2008. Springer.
[30] Singh, H., et al. (2019). A reliable numerical algorithm for the fractional klein-gordon equation. Engineering Transactions. 67(1), 21–34.
[31] Kennedy, J. & R. Eberhart. Particle swarm optimization (pso). in Proc IEEE International Conference on Neural Networks, Perth, Australia. 1995.
[32] Kaveh, A. & V. Mahdavi. (2014). Colliding bodies optimization: A novel meta-heuristic method. Computers & Structures. 139: p. 18-27.
[33] Sadollah, A., et al. (2013). Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Applied Soft Computing. 13(5), 2592-2612.
[34] Wang, B., C. Liu, & H. Wu. (2014). The research of pattern synthesis of linear antenna array based on seeker optimization algorithm. in 2014 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE.
[35] He, S., Q. H. Wu, & J. Saunders. (2009). Group search optimizer: An optimization algorithm inspired by animal searching behavior. IEEE transactions on evolutionary computation. 13(5), 973-990.
[36] Ramezani, F. & Lotfi, S. (2013). Social-based algorithm (sba). Applied Soft Computing. 13(5), 2837- 2856.
[37] Lu, Y., et al. (2010). An adaptive chaotic differential evolution for the short-term hydrothermal generation scheduling problem. Energy Conversion and Management. 51(7), 1481-1490.
[38] Lu, Y., et al. (2010). An adaptive hybrid differential evolution algorithm for dynamic economic dispatch with valve-point effects. Expert Systems with Applications. 37(7), 4842-4849.
[39] Chang, L., et al. (2012). A hybrid method based on differential evolution and continuous ant colony optimization and its application on wideband antenna design. Progress in electromagnetics research. 122: p. 105-118.
[40] Abdullah, A., et al. (2013). An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters. PloS one. 8(3), e56310.
[41] Niknam, T., Azizipanah-Abarghooee, R. & Aghaei, J. (2012). A new modified teaching-learning algorithm for reserve constrained dynamic economic dispatch. IEEE Transactions on power systems. 28(2), 749-763.
[42] Bhattacharya, A. and Chattopadhyay, P. K. (2010). Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch. IEEE Transactions on power systems. 25(4), 1955- 1964.
[43] Kuo, R. and Zulvia, F. E. (2015). The gradient evolution algorithm: A new metaheuristic. Information Sciences. 316: p. 246-265.
[44] Bazaraa, M. S., H. D. Sherali, & C. M. Shetty. (2013). Nonlinear programming: Theory and algorithms. John Wiley & Sons.
[45] Wang, S.-K., J.-P. Chiou, & C.-W. Liu. (2007). Nonsmooth/non-convex economic dispatch by a novel hybrid differential evolution algorithm. IET Generation, Transmission & Distribution. 1(5), 793- 803.
[46] Chiou, J.-P. (2007). Variable scaling hybrid differential evolution for large-scale economic dispatch problems. Electric Power Systems Research. 77(3-4), 212-218.
[47] Storn, R. & K. Price. (1997). Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization. 11(4), 341-359.
[48] Kuo, R. & F. E. Zulvia. Cluster analysis using a gradient evolution-based k-means algorithm. in 2016 IEEE Congress on Evolutionary Computation (CEC). 2016. IEEE.
[49] Mezura-Montes, E. & C. A. C. Coello. (2008). An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems. 37(4), 443- 473.
[50] Kaveh, A. & S. Talatahari. (2009). A particle swarm ant colony optimization for truss structures with discrete variables. Journal of Constructional Steel Research. 65(8-9), 1558-1568.
[51] Koziel, S. & Z. Michalewicz. (1999). Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolutionary computation. 7(1), 19-44.
[52] Runarsson, T. P. & X. Yao. (2000). Stochastic ranking for constrained evolutionary optimization. IEEE Transactions on Evolutionary Computation. 4(3), 284- 294.
[53] Parsopoulos, K. E. & M. N. Vrahatis. (2005). Unified particle swarm optimization for solving constrained engineering optimization problems. in International conference on natural computation. Springer.
[54] Karaboga, D. & B. Basturk. (2007). Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. in International fuzzy systems association world congress. Springer.
[55] Akay, B. & D. Karaboga. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of intelligent manufacturing. 23(4), 1001-1014.
[56] Geem, Z. W., J. H. Kim, & G. V. Loganathan. (2001). A new heuristic optimization algorithm: Harmony search. Simulation. 76(2), 60-68.
[57] Lee, K. S. & Z. W. Geem. (2005). A new metaheuristic algorithm for continuous engineering optimization: Harmony search theory and practice. Computer Methods in Applied Mechanics and Engineering. 194(36-38), 3902-3933.
[58] Farooq, H. & M. T. Siddique. (2014). A comparative study on user interfaces of interactive genetic algorithm. Procedia Computer Science. 32: p. 45-52.
[59] Amirjanov, A. (2008). Investigation of a changing range genetic algorithm in noisy environments. International journal for numerical methods in engineering. 73(1), 26-46.
[60] Hamida, S. B. & M. Schoenauer. (2002). Aschea: New results using adaptive segregational constraint handling. in Proceedings of the 2002 Congress on Evolutionary Computation CEC'02 (Cat No 02TH8600). IEEE.
[61] Krohling, R. A. & L. dos Santos Coelho. (2006). Coevolutionary particle swarm optimization using gaussian distribution for solving constrained optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 36(6), 1407-1416.
[62] Coello Coello, C. A. & R. L. Becerra. (2004). Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization. 36(2), 219-236.
[63] Huang, F.-z., L. Wang, & Q. He. (2007). An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation. 186(1), 340-356.
[64] Zahara, E. & Y.-T. Kao. (2009). Hybrid nelder–mead simplex search and particle swarm optimization for constrained engineering design problems. Expert Systems with Applications. 36(2), 3880-3886.
[65] Becerra, R. L. & C. A. C. Coello. (2006). Cultured differential evolution for constrained optimization. Computer Methods in Applied Mechanics and Engineering. 195(33-36), 4303-4322.
[66] Muñoz Zavala, A. E., A. H. Aguirre, & E. R. Villa Diharce. (2005). Constrained optimization via particle evolutionary swarm optimization algorithm (peso). in Proceedings of the 7th annual conference on Genetic and evolutionary computation. ACM.
[67] Tessema, B. & G. G. Yen. (2006). A self adaptive penalty function based algorithm for constrained optimization. in 2006 IEEE International Conference on Evolutionary Computation. IEEE.
[68] Lampinen, J. (2002). A constraint handling approach for the differential evolution algorithm. in Proceedings of the 2002 Congress on Evolutionary Computation CEC'02 (Cat No 02TH8600). IEEE.
[69] Fogel, D. B. (1995). A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems. Simulation. 64(6), 397-404.
[70] Amirjanov, A. (2006). The development of a changing range genetic algorithm. Computer Methods in Applied Mechanics and Engineering. 195(19-22), 2495-2508.
[71] Chootinan, P. & A. Chen. (2006). Constraint handling in genetic algorithms using a gradient-based repair method. Computers & operations research. 33(8), 2263-2281.
[72] Gupta, S., R. Tiwari, & S. B. Nair. (2007). Multiobjective design optimisation of rolling bearings using genetic algorithms. Mechanism and Machine Theory. 42(10), 1418-1443.
[73] Zhang, M., W. Luo, & X. Wang. (2008). Differential evolution with dynamic stochastic selection for constrained optimization. Information Sciences. 178(15), 3043-3074.
[74] Wang, L. & L.-p. Li. (2010). An effective differential evolution with level comparison for constrained engineering design. Structural and Multidisciplinary Optimization. 41(6), 947-963.
[75] Hedar, A.-R. & M. Fukushima. (2006). Derivative-free filter simulated annealing method for constrained continuous global optimization. Journal of global optimization. 35(4), 521-549.
[76] Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering. 186(2-4), 311- 338.
[77] Runarsson, T. P. & X. Yao. (2005). Search biases in constrained evolutionary optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews). 35(2), 233-243.
[78] Mezura-Montes, E. & C. A. C. Coello. (2005). A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Transactions on Evolutionary Computation. 9(1), 1- 17.
[79] Michalewicz, Z. (1995). Genetic algorithms, numerical optimization, and constraints. in Proceedings of the sixth international conference on genetic algorithms. Citeseer.
[80] Rao, R. V., V. J. Savsani, & D. Vakharia. (2011). Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems. Computer-Aided Design. 43(3), 303-315.
[81] Wang, Y., et al. (2009). Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique. Structural and Multidisciplinary Optimization. 37(4), 395-413.
[82] de Fátima Araújo, T. & W. Uturbey. (2013). Performance assessment of pso, de and hybrid pso–de algorithms when applied to the dispatch of generation and demand. International Journal of Electrical Power & Energy Systems. 47: p. 205-217.
[83] Liu, H., Z. Cai, & Y. Wang. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. Applied Soft Computing. 10(2), 629-640.
[84] Bracken, J. & G. P. McCormick (1968). Selected applications of nonlinear programming. Research Analysis Corp Mclean.